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Preface

This document describes Spar/Java language, a superset of Java. The docu-
ment also describes the capabilities and restrictions of version 2.0 of the Timber
compiler, which implements the Spar/Java language.

Since Spar/Java is derived from Java, the Java language specification is not
repeated here, but the specification refers to the official Java language specifi-
cation [7] intensively. Any suggestions for improvement are welcome; you can
email me at C.vanReeuwijk@its.tudelft.nl.

There is a Spar/Java website at www.pds.twi.tudelft.nl/timber/spar/overview.html,
and a website of the Timber compiler at www.pds.its.tudelft.nl/timber
There is also a public mailing list with announcements of Spar and the Timber
compiler. To subscribe, send an email to spar-request@pds.its.tudelft.nl
with the subject ‘subscribe’. To unsubscribe, send an email to
spar-request@pds.its.tudelft.nl with the subject ‘unsubscribe’.
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Chapter 1

Introduction

Spar/Java is a programming language for high-performance computing, includ-
ing parallel programming. Since high-performance computing often means com-
putations on arrays, there is special support for arrays, including a ‘toolkit’ to
build support for more specialized array types.

As stated, Spar/Java supports parallel programming. The first question to
answer is: why not leave the whole problem of parallel programming to the
compiler? After all, normal compilers do a good job of mapping high-level code
to machine instructions, so why can’t the compiler map to multiple streams of
machine instructions? There are a number of reasons for that:

1. Algorithms often contain so many data dependencies that they do not
lend themselves to automatic parallelization. Automatic and unattended
transformation to an algorithm with less dependencies is far beyond the
current state of the art in compiler technology. Therefore, the programmer
often has to choose a different algorithm or coding to exploit parallelism.

For example: consider a linear search through an array for an arbitrary
element with the given value. On a parallel computer system we could
speed up the search by letting each processor search a part of the array, but
this will not always yield the same result as the linear search: it may not
return the first element with that value. Depending on the application, we
may, or may not, care about the difference. In other words, the sequential
program is often over-specified.

2. Automatic load balancing is difficult, because (a) predicting execution
time exactly is impossible (it is equivalent to solving the halting problem)1,
and (b) placing the tasks optimally on the available processors is NP-hard.

For example: the linear search mentioned above may be known to usually
succeed in the first few entries, or may be known to fail often. In general,
this is impossible to know beforehand.

3. Communication (either implicit or explicit) makes the problem even harder,
because it introduces new freedom, and requires the prediction of the per-
formance of the communication system.

1However, it is often possible to give an approximation of the execution time that is accurate
enough for practical purposes.
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Despite these obstacles, there have been some efforts to do automatic par-
allelization, but these efforts necessarily only solve an approximate problem,
make drastic assumptions, or restrict themselves to smaller domains. We must
therefore accept that writing a program for a parallel computer requires the
programmer to express parallelism explicitly.

Although the need has been there for a long time, there is still no program-
ming language that allows parallel programs to be expressed conveniently. This
means that writing a parallel program still requires a lot more effort than writing
a sequential program. Obviously, this has not helped the acceptance of parallel
computers.

Apart from the problems of sequential programs, a programmer of a parallel
program has to cope with new hazards:

• Deadlock.

• Non-determinism (e.g. race conditions).

• Parallelization overhead.

• Resource utilization.

As we have seen, compilers cannot cope with these problems automatically. The
programmer will have to tackle the same problems, which are hard for him/her
too, but apparently we humans are able to cope. Nevertheless, a good pro-
gramming language should provide as much support as possible to minimize the
impact of these hazards. Many existing programming languages that provide
explicit parallelism fail in this respect, because they provide only very prim-
itive constructs. For example, Occam[13], Java[6], and CC++[3] all provide
constructs that make it very easy for the programmer to cause deadlock or race
conditions. Languages such as HPF[10] are not dangerous in this respect, but,
because of their limited parallel programming model, make it more difficult to
avoid parallelization overhead and to maximize resource utilization.

In Spar/Java it is tried to avoid both these shortcomings by confining the
programmer to the class of parallel programs known as SPC (sequential/parallel
with contention) programs. It has been conjectured [5] that any parallel program
can be rewritten to a SPC program, with an overhead of at most a factor two,
and usually much lower. Obviously, this conjecture is difficult to prove in the
general case, but compelling evidence has been gained that suggests the loss of
parallelism caused by this restriction is limited [4].

A nice property of SPC programs is that fairly accurate performance pre-
dictions can be made, which makes it easier for the compiler to maximize re-
source utilization [5]. Another nice property is that they are inherently free of
deadlock. Moreover, the Spar language constructs have been designed to limit
non-determinism.

The Spar/Java programming language is designed as a modern programming
language for parallel computer systems. It provides all the conveniences of mod-
ern programming languages, plus good support for parallel programming, while
remaining sufficiently close to the implementation level to allow compilation to
efficient code. Spar/Java is almost a superset of Java[6], although there are
some aspects of Java that are not supported. See section 1.1 for a more detailed
overview of the differences.
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At the places where Spar extends Java, the language constructs were often
inspired by functional or other non-imperative languages. In particular, tuples
are copied from functional languages such as ML [9], Miranda [18, 19] and
Haskell [11]. The concept of tuple indexing and the embedding of macros in the
language, and the concept of types as parameters is from the more fundamental
language theory of Raymond Boute [1] and from the FORFUN project [16]. Spar
is not the first language to add parameterized types to Java: In their language
Pizza [14], Martin Odersky and Philip Wadler add parametric polymorphism,
higher-order functions and algebraic types to Java.

Since a parallel language is often used to express numerical algorithms and
other algorithms that work on arrays, a parallel language should provide sub-
stantial support for arrays. Spar provides this. It is largely inspired by For-
tran 90 [12] and Booster [15].

1.1 Current status

This document describes the Spar language extensions to Java. Appendix B also
lists the restrictions of version 2.0 of the Timber compiler, which implements
Spar/Java. For information purposes, appendix C describes the planned future
extensions of Spar.

We use the second edition of the Java Language Specification (or JLS2 for
short) [8], as the basis of our extensions.
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Chapter 2

Lexical structure

2.0.1 keywords

Next to all the Java keywords listed in JLS2 3.9, Spar also reserves the following
keywords1. Therefore, they cannot be used as identifiers.

Keyword: one of
__delete __print __println __string complex each foreach
globalpragmas inline pragma type

It is possible to instruct the Timber compiler with a command-line option to
ignore some of the Spar extensions. This reverts the relevant keywords to normal
symbols. See §A.2.3.

The keyword assert, introduced in Java 2 version 1.4, is also reserved as a
keyword, but not yet supported.

2.0.2 Literals

In addition to the Java literals described in JLS2 3.10, Spar supports complex
literals. These have the same syntax as FloatingPointLiteral (see JLS2 3.10.2),
except that they have the suffix i or I.

For example, 1i is a valid imaginary literal.
This extension introduces a small incompatibility, because a valid expression

such as ""+1instanceof String will be parsed differently from Java. Simply
rewriting the expression to ""+1 instanceof is enough to fix this.

1Future versions of Spar will likely also use the keyword wait.
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Chapter 3

Types, values and variables

3.1 Kinds of Types and Values

Next to primitive types and reference types, Spar adds a new kind of type, the
tuple. Thus, the definition of Type becomes (compare this with JLS2 4.1):

Type:
PrimitiveType
TupleType
ReferenceType

Tuple types are described in Chapter 5.

3.2 Complex numbers

As an extension to Java, Spar supports the primitive type complex. There are
no complex literals, only imaginary literals (written, for example, as 2.0i).

A complex value can also be constructed with the following expression:

PrimaryNoNewArray :
complex ( Real-Expression , Imag-Expression )

Internally, complex numbers are represented as a pair of double numbers for
the real and imaginary part.

3.2.1 Complex Operations

Spar provides a number of operators that act on complex values:

• The numerical equality operators == and !=; they result in a value of type
boolean.

• The numerical operators, which result in a value of type complex:

– The unary plus and minus operators + and -.

– The multiplicative operators1 * and /.
1 The operator “%” is meaningless on complex numbers, so is not supported.
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– The additive operators + and -.

– The increment operator ++, both prefix and postfix.

– The decrement operator --, both prefix and postfix.

• The conditional operator ?:.

• The cast operator, which can convert from a complex value to a value of
any specified numeric type. It takes the real part of the value.

• The string concatenation operator +, which, when given a String operand
and a complex operand, will convert the complex operand to a String
representing its value in decimal form, and then produces a newly created
String by concatenating the two strings.

For example, the program:

public class cplx {
public static void main( String args[] ){

complex c = complex( 2, 1 );
System.out.println( "c="+c );
c++;
System.out.println( "c="+c );
c *= 2;
System.out.println( "c="+c );
c -= complex( 1, 2 );
System.out.println( "c="+c );
c *= 2+3i;
System.out.println( "c="+c );

}
}

generates the following output:

c=(2.0,1.0)
c=(3.0,1.0)
c=(6.0,2.0)
c=(5.0,0.0)
c=(10.0,15.0)

3.3 Variables

A variable of a tuple type always holds a value of that exact tuple type.
The initial value of a tuple is a tuple with the initial values of the elements

of the tuple. For example, the program:

class Point {
[int,int] coord;

}

public class initialtuple {
public static void main(){
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Point p = new Point();

System.out.println( "p.coord[0] = " + p.coord[0] );
}

}

prints:

p.coord[0] = 0

illustrating the default initialization of coord, which occurs when a new instance
of type Point is constructed.
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Chapter 4

Conversions and
promotions

4.1 Kinds of Conversion

4.1.1 Widening Primitive Conversions

Next to the widening primitive conversions described in JLS2 5.1.2, Spar sup-
ports the following:

• byte, short, char, int, long, float or double to complex

For example, the following program contains a widening conversion from int to
complex:

public class widecplx {
public static void main( String args[] ){

int n = 1;
complex c = n; // Widening conversion to complex
System.out.println( "c="+c );

}
}

It generates the following output:

c=(1.0,0.0)

4.1.2 Narrowing Primitive Conversions

Next to the narrowing primitive conversions described in JLS2 5.1.3, Spar sup-
ports the following:

• complex to byte, short, char, int, long, float or double

For example, the following program contains a narrowing conversion from
complex to int:

12



public class castcplx {
public static void main( String args[] ){

complex c = 3+2i;
int n = (int) c; // Narrowing conversion.
System.out.println( "n="+n );

}
}

It generates the following output:

n=3

4.1.3 Tuple conversions

A tuple conversion converts each element of a tuple to its target type. Tuple
conversions are only allowed between tuples of the same length.

If there is at least one element of the tuple that requires narrowing conver-
sion, the conversion is called a narrowing tuple conversion. Otherwise, if there
is at least one element of the tuple that requires widening conversion, the con-
version is called widening tuple conversion. Otherwise, the conversion must be
an identity conversion. For example, the following program contains a widening
tuple conversion:

public class widentuple {
public static void main( String args[] ){

// The initialization expression requires a widening
// conversion: [int,int] to [double,int].
[double,int] t = [0,1];
System.out.println( "t[0]="+t[0]+" t[1]="+t[1] );

}
}

It generates the following output:

t[0]=0.0 t[1]=1

4.2 Numeric Promotions

In addition to the binary numeric promotions described in JLS2 5.6.2, Spar
supports the following binary numeric promotion:

• If either operand is of type complex the other is converted to complex.

For example, the following program contains a promotion from int to complex:

public class promocplx {
public static void main( String args[] ){

complex c1 = 3+2i;
int n = 12;
complex c2 = c1+n; // ’n’ is promoted to complex
System.out.println( "c2="+c2 );

}
}
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The program generates the following output:

c2=(15.0,2.0)

4.3 Binary tuple promotion

If one of the operands of a binary operator is a tuple, and the other one is a
scalar, the scalar operand is promoted to a tuple through element replication:
the scalar expression is evaluated once, and the result is used repeatedly to fill
the fields of a tuple with the same length as the other operand.

For example, the following program contains a binary tuple promotion from
from int to [int,int]:

public class promotuple {
public static void main( String args[] ){

[int,int] a = [2,3];
final int i = 2;

// ’i’ is subject to binary tuple promotion
[int,int] b = i*a;
System.out.println( "b[0]="+b[0]+", b[1]="+b[1] );

}
}

The program generates the following output:

b[0]=4, b[1]=6
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Chapter 5

Tuples

A tuple is a list of elements. The list is of fixed size, and each element can
be of any type. Tuples can be constructed by surrounding a list of expressions
with square brackets. For example, [1,’a’] constructs a tuple of two elements.
Such an expression is called an explicit tuple. Explicit tuples have the following
syntax:

Expression:
[ Expressionlist ]

The type of a tuple has the following syntax:

type:
[ VerboseTypelist ]

VerboseType:
PrimitiveType Pragmasopt
TupleType Pragmasopt
type Type

The types in a tuple specification must be preceded with the keyword type to
distinguish them from variable names. In cases where no ambiguity is possible
(primitive types and tuples), this keyword can be left out. For example, the
following is a valid declaration and initialization of a variable of a tuple type:

[type int, type int, type Object] a = [1,1,null];

Since for primitive types the type keyword can be omitted, the following is
equivalent:

[int, int, type Object] a = [1,1,null];

Since a tuple usually contains elements of primitive types, this allows for a
compact notation.

Tuples have a field length that represents the length (the number of ele-
ments) of the tuple. This expression is a compile-time constant.

The following program demonstrates the use of tuples:
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public class tupledemo {
public static void main(){

[int,double,char] x = [0,0.0,’\0’];

x = [1,2.0,’x’];
System.out.println( x[0] + " " + x[1] +

" " + x[2] + " " + x.length );
}

}

This will produce the following output:

1 2.0 x 3

Just like primitive types, tuples do not have to be created explicitly (i.e. you
do not have to do ‘new’ for them), and just like primitive types, they are passed
by value. A tuple of length 1 is not the same as a scalar.

5.1 Vector tuples

A vector tuple is a tuple where all elements are of the same type. For the type
of such a vector tuple there is a special notation:

type:
[ VerboseType ^ expression ]

The following program demonstrates the use of vector tuples:

public class vectordemo {
public static void main(){

[int^3] x = [0,0,0];

System.out.println( x[0] + " " + x[1] + " " + x[2] );
x[0] = 1;
x[1] = 2;
x[2] = 3;
System.out.println( x[0] + " " + x[1] + " " + x[2] );
x = [2,3,1];
System.out.println( x[0] + " " + x[1] + " " + x[2] );

}
}

This will produce the following output:

0 0 0
1 2 3
2 3 1

As will be shown later in Chapter 8, vector tuples are important for array access,
and for the Array interface.
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5.2 Tuple matching expressions

LeftHandSide:
[ LeftHandSidelist ]

An explicit tuple can be used at the left-hand side of an assignment. Such an
expression can only be assigned a tuple of the same length. The left-hand side
tuple should only contain assignable expressions. They are assigned the values
of the element at the same place in the right-hand side tuple expression. For
example, the following program demonstrates the use of tuple matching:

public class tuplematch {
public static void main(){

[int,double,char] x = [0,0.0,’\0’];
int a;
double b;
char c;

x = [1,2.0,’x’];
[a,b,c] = x;

System.out.println( a + " " + b + " " + c );
}

}

This will produce the following output:

1 2.0 x
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Chapter 6

Classes

6.1 Parameterized classes

Spar generalizes Java classes by allowing class definitions to be parameterized.
For example, consider this class, taken from [2]:

class Stack extends Object {
static final int STACK_EMPTY = -1;
Object[*] stackelements;
int topelement = STACK_EMPTY;

void push( Object e ){
stackelements[++topelement] = e;

}

Object pop() {
return stackelements[topelement--];

}

boolean isEmpty(){
return ( topelement == STACK_EMPTY );

}
}

The stack class above can hold elements of arbitrary type. This might be useful,
but for stricter type checking or for more efficiency we want to restrict the stack
to elements of a given type. We could implement lots of classes, such as IntStack,
StringStack and PointStack, but it is much more useful to implement a generic
stack that gets the type of elements it must stack as parameter. In Spar this is
possible as follows:

class TypedStack(| type t |) {
static final int STACK_EMPTY = -1;
t[*] stackelements = new t[100];
int topelement = STACK_EMPTY;

public TypedStack() {}

18



public void push( t e ){
stackelements[++topelement] = e;

}

public t pop() {
if( topelement == STACK_EMPTY )

return (t) 0;
else {

return stackelements[topelement--];
}

}

public boolean isEmpty(){
if( topelement == STACK_EMPTY )

return true;
else

return false;
}

}

public class typedstack {
public static void main(){

TypedStack(| char |) s = new TypedStack(| char |)();

s.push( ’a’ );
s.push( ’b’ );
char c = s.pop();
System.out.println( c );

}
}

This program will produce the following output:

b

This program defines a parameterized class TypedStack with a parameter t
representing the type of elements to be stacked. It then defines an instance s
of a TypedStack for char elements, it pushes two elements on the stack, pops
one from the stack, and prints it.

To accommodate parameterized classes, the syntax of JLS2 8.1 is generalized
to:

ClassDeclaration:
ClassModifiersopt class Identifier TypeParametersopt Superopt
Interfacesopt ClassBody

TypeParameters:
(| TemplateFormalParameterlist |)

TypeFormal :
Modifiersopt type Identifier FormalParameter

19



And ClassOrInterfaceType is generalized to:

ClassOrInterfaceType:
Name
GenericClassOrInterfaceType

GenericClassOrInterfaceType:
Name (| TemplateArgumentlist |)

TemplateArgument :
Expression
VerboseType

The grammar of formal parameters is extended with an additional rule: The
actual parameters of a class may be types (the corresponding formal parameter
must have type type), or values of a primitive type1. Actual parameters must
evaluate to compile-time constants.

For each different combination of actual parameters, a new instance of the
parameterized class is constructed. These class instances are then treated as
classes in the same package as the original, parameterized, class.

Type parameters of parameterized classes are hidden by nested formal type
parameters. Value parameters are hidden by nested formal parameters, except
formal type parameters. They are also hidden by nested declarations, including
cardinality variables.

6.2 Inlining

Spar/Java provides inlining for to allow the abstraction of simple constructs
without paying the cost of a function call. The keyword inline is a new modifier
for methods and constructors. It strongly suggests to the compiler that a copy
of the method or constructor should be placed at all invocations. For example:

class Stats {
long sum;
int n;

inline Stats() { sum = 0; n = 0; }

inline void update( int val ) { n++; sum += val; }

inline float average() {
return ((float) val)/((float) n);

}
}

An inlined method must be either static or final, inlined methods cannot be
native or abstract.

1Class parameters cannot be of reference types, since the equality of two reference cannot be
determined at compile-time. For similar reasons, floating point class parameters are dubious,
although they are allowed.

20



Chapter 7

Interfaces

7.1 Parameterized interfaces

Spar generalizes Java interfaces by allowing the interface definition to be param-
eterized, similar to the generalization of classes described in §6.1.

For example, consider the following interface from [2]:

interface Collection {
int MAXIMUM = 500;

void add( Object obj );
void delete( Object obj );
Object find( Object obj );
int currentCount();

}

A class can now promise to implement all methods of this interface by declaring:

Class Bag implements Collection {
. . .

};

In Spar, interfaces can be parameterized:

interface TypedCollection(| type t |){
void add( t obj );
void delete( t obj );
t find( t obj );
int currentCount();

}

class TypedBag(| type t |) implements TypedCollection(| type t |) {
t[*] elements = new t[0];
int sz = 0;

public TypedBag() {}
private int search( t elm ){

for( i :- 0:sz ){
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if( elm == elements[i] ){
return i;

}
}
return -1;

}
public void add( t e ){

if( elements.length<=sz ){
t[*] newelements = new t[2*elements.length+1];
for( i:- 0:sz ){

newelements[i] = elements[i];
}
elements = newelements;

}
elements[sz++] = e;

}

public void delete( t e ) {
int pos = search( e );
if( pos != -1 ){

for( i :- pos+1:sz-1 ){
elements[i] = elements[i+1];

}
sz--;

}
}

public int currentcount(){ return sz; }
}

public class typedinf {
public static void main(){

TypedBag(| type char |) s = new TypedBag(| type char |)();

s.add( ’a’ );
s.add( ’b’ );
s.add( ’b’ );
System.out.println( s.currentcount() );
s.delete( ’b’ );
System.out.println( s.currentcount() );

}
}

This will produce the following output:

3
2

To accommodate parameterized types, the grammar of InterfaceDeclaration is
generalized to:

InterfaceDeclaration:
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InterfaceModifiersopt interface Identifier TypeParametersopt
ExtendsInterfacesopt InterfaceBody

See §6.1 for the definition of TypeParameters and related extensions of the gram-
mar.

An important application of typed parameterized interfaces is the Array in-
terface, see §8.6.
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Chapter 8

Arrays

Since Spar/Java is a language for high-performance computation, it has far
more extensive support for arrays than Java. Spar generalizes Java arrays on
the following points:

• Arrays can be multi-dimensional.

• Arrays can be distributed over multiple processors.

• Arrays can be subscripted with int vector expressions.

Also, a number of other language extensions were designed to contribute to a
‘toolkit’ of extensions for the construction of specialized array types.

8.1 Array types

An array type is written as the name of an element type, followed by a number
of abstract shape specifications. For example:

int[*] v; // A 1-dimensional array
int[*,*] A; // A 2-dimensional array
int[] n; // For Java compat., a 1-dimensional array

Alternatively, these array declarations may be written as:

int v[*]; // A 1-dimensional array
int A[*,*]; // A 2-dimensional array
int n[]; // For Java compat., a 1-dimensional array

These two styles of declaration are completely equivalent.
The number of dimensions of an array, called the rank of the array, is spec-

ified by the number of * in the list. To remain compatible with Java, an empty
list is not interpreted as a zero-dimensional array, but as a one-dimensional
array. Thus, the declarations int a[] and int a[*] are equivalent.

Alternatively, Spar the rank of an array can be specified as a compile-
time constant using the ‘^’ operator. For example, the two type expressions
int [*,*] and int [*^2] are equivalent. An arbitrary expression is allowed
after the ‘^’, provided that it is a non-negative compile-time constant of type
int. This notation is much more flexible; for example, it allows the rank of an
array to be dependent on a parameter of a parameterized type.
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8.2 Array creation

A variable of an array type holds a reference to an object. Declaring such a
variable does not create an array object or allocate any space for array compo-
nents. It creates only the variable itself, which can contain a reference to an
array.

However, the initializer part of a declarator may create an array, a reference
to which then becomes the initial value of the variable.

Because an array’s length is not part of its type, a single variable of an array
type may contain references to arrays of different lengths.

In an array creation expression, the list of sizes of the array is a vector tuple.
Next to the standard, immediate, specification of the vector, Spar also allows
specification with an arbitrary vector tuple expression, using the @ operator, see
the example below.

Here are some examples of declarations of array variables that create array
objects:

public class arrcreate {
public static void main(){

int a[*] = new int[4];
short b[*,*] = new short[6,8];
int c[*] = new int[] { 1, 2, 3, 4 };
int sq[*] = { 1, 4, 9, 16, 25, 36 };
float ident[*,*] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
float vv[*][*] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
String[] aos = { "array", "of", "string" };
[int^2] v = [12,12];
int d[*,*] = new int@v;

}
}

Note that ident and vv have the same initialization expression, but they
are not equivalent. The first is a two-dimensional array, the second is a one-
dimensional array of one-dimensional arrays.

8.3 Array access

A component of an array is accessed by an array access expression that consists
of an expression whose value is an array reference followed by an explicit int
vector, as in: A[i,j]. All arrays are 0-origin. A one-dimensional array with
length n can be indexed by the integers 0 to n− 1.

In an array subscript expression such a A[1,2], the expression [1,2] is
considered an explicit int vector tuple expression (see Chapter 5 for a discussion
of tuples). Spar generalizes Java to allow subscription with arbitrary int vector
tuple expressions.

The most obvious way to implement this generalization would be to interpret
juxtaposition as subscript operator. Thus, given an array A and an int vector
tuple v, the expression A v would represent an array access. Unfortunately, such
an expression is ambiguous in the context of many Java expressions. Therefore,
an explicit subscript operator @ is introduced. Thus, A@v is a valid array access.
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Since an explicit vector is also a vector expression, an array access such as
A@[1,2] is also valid.

The @ operator has the same high precedence as unary operators, so that
expressions such as a@v+1 is evaluated as (a@v)+1.

A tuple can be used for indexing if its length is equal to the rank of the
indexed array, and if all elements of the tuple can be converted to type int
through unary numeric promotion.

For example, the following assigns 2 to array element [2,3] of array A, and
assigns 5 to array element [3,2].

public class arrassign {
public static void main(){

int[*,*] A = new int[4,4]; // A 2-dim array.
A[2,3] = 2;
A@[3,2] = 5;
for( int x=0; x<A.getSize(0); x++ ){

for( int y=0; y<A.getSize(1); y++ ){
System.out.print( A[x,y] + " " );

}
System.out.println();

}
}

}

This program will produce the following output:

0 0 0 0
0 0 0 0
0 0 0 2
0 0 5 0

8.4 The length field

Java arrays have a length field, that contains the length of the array. For
multi-dimensional arrays this is the product of all dimension lengths.

Use the method getSize(int) to get the size of a dimension of a multi-
dimensional array, or the method getSize() to get a vector tuple with all sizes.

8.5 The getSize method and getRoom methods

In Spar/Java every array supports the following methods:

int getSize( int n );
[int^rank] getSize();
int getRoom();

where rank is the rank of the array. The first method returns the size of the
array in the given dimension, the second method returns a vector with all sizes.
For example, the following program creates a two-dimensional array, and fills it
with zeroes:
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public class arrzero {
public static void main(){

int[*,*] A = new int[10,10];

for( int x=0; x<A.getSize(0); x++ )
for( int y=0; y<A.getSize(1); y++ )

A[x,y] = 0;
}

}

The following program is equivalent to the previous example, but uses vector
notation, see §10.1:

public class arrzero1 {
public static void main(){

int[*,*] A = new int[10,10];

for( v :- [0,0]:A.getSize() )
A@v = 0;

}
}

8.6 Overloading the subscript operator

As a generalization to Java, Spar/Java allows the subscript operator to be
applied to any class that implements two methods named getElement and
storeElement. In the context of an assignment, the assignment and subscript
expression are translated to an invocation statement of the method storeElement;
in all other contexts a subscript expression is translated to an invocation ex-
pression of the method getElement.

For example, the statement

a@v = x;

is translated to:

a.storeElement( v, x );

And the statement

x = a@v;

is translated to:

x = a.getElement( v );

It is recommended that classes that want to use this feature implement the
interface Array. See §13.3 for details. Similarly, it is recommended that classes
that implement arrays that can be grown and shrunk implement the interface
ElasticArray.

Overloading the subscript operator is convenient in the implementation of
specialized matrix representations such as block matrices and sparse matri-
ces. For example, the following class defines a ‘view’ on the diagonal of a
two-dimensional array.
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class DiagonalView(| type t |) implements Array(| t, 2 |)
{

t[*,*] ref; // Reference to the viewed array

inline DiagonalView( t[*,*] a ){ ref = a; }

inline t getElement( [int] ix ){ return ref[ix[0],ix[0]]; }

inline void storeElement( [int] ix, t elm )
{

ref[ix[0],ix[0]] = elm;
}

inline [int] getSize() {
[int^2] dims = ref.getSize();
// The brackets construct a vector, as required by the interface.
return [Math.min( dims[0], dims[1] )];

}
}

This class can now be used as follows:

int[*,*] a = new int[5,5];
DiagonalView(int) v = DiagonalView( a );
for( i=[0,0]:a.getSize() ){

a@i = i[0]+i[1];
}
for( i :- 0:v.getSize(0) )

v[i] = 0;

This program will construct a matrix ‘a’, with each element set to the sum of
its coordinates. The last statement then fills the elements of the diagonal with
0.

As another example, the following class implements a transpose view on an
array of arbitrary size.

class TransposeView(| type t, int n |) implements Array(| t, n |)
{

t [*^n] ref; // Reference to the viewed array

inline TransposeView( t [*^n] a ){ ref = a; }

inline t getElement( [int^n] ix )
{

return ref@revVector( n, ix );
}

inline void storeElement( [int^n] ix, t elm )
{

ref@revVector( n, ix ) = elm;
}
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inline [int^n] getSize()
{

return revVector( n, ref.getSize() );
}

static inline [int^n] revVector( int n, [int^n] v )
{

int ix;
[int^n] res;

inline for( ix=0:n ){
res[(n-ix)-1] = v[ix];

}
return res;

}
}

Note that this class even works for 0-dimensional and 1-dimensional arrays.
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Chapter 9

Execution

9.1 Finding the class that contains the main method

According to the Java Language Specification, executing a Java program con-
sists of executing the method with signature

public static void main( String args[] )

in a .class file that is given as parameter upon startup. See JLS2 12.1 for
further details. In a static compiler this rule cannot be implemented, since
.class files are never generated, and the compiler only gets the name of the
.spar, .jav or .java file to compile. This makes a difference for Java source
files such as

class foo {
public static void main( String[] args ) {

System.out.println( "Hi from foo" );
}

}

public class bar {
public static void main( String[] args ) {

System.out.println( "Hi from bar" );
}

}

Since there is a public class bar in this source file, this code must live in a source
file with the name bar.spar, bar.java, or bar.jav.

If you use a normal Java compiler on this file, two files will be generated:
foo.class and bar.class. You can invoke either of the main methods by
running one of the two .class files.

In a static compiler this is not possible, since you only specify the .spar or
.java file to compile. Instead, we specify that a compiler should search for a
class with the same name as the source file that was given. Therefore, the main
method in class foo cannot be used as the starting method, since the file must
have the name bar.java, bar.jav, or bar.spar.

On the other hand, note that this rule permits that the class bar is not
declared public.
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9.2 Alternative main method

As described above, a Spar compiler should search for the initial method to
invoke in the first public class of the top-level source file it is given. In this class
it searches for a method with the signature:

public static void main( String args[] )

As an extension, if such a method cannot be found, a Spar/Java compiler
searches the class again for a method with the signature:

public static void main()

For example, the following program is valid in Spar/Java, but not in Java:

public class emptymain {
public static void main(){

System.out.println( "Hello world" );
}

}

It will produce the following output:

Hello world
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Chapter 10

Blocks and Statements

10.1 The for statement

Next to the for statement described in JLS2 14.13, Spar allows for loops with
cardinality lists; the same notation that is used for the foreach statement (see
§10.4 below). Thus, code like this:

public class forcard {
public static void main(){

int sum = 0;

for( i :- 0:10 )
sum += i;

System.out.println( sum );
}

}

is allowed. The program will print:

45

This form of the for statement is allowed for reasons of symmetry with the
foreach statement. Moreover, this form allows easier loop analysis, because
the bounds and stride of the loop are only evaluated once, and assignment to
the loop variable is not allowed.

See §10.4 for further details on the syntax and meaning of cardinality lists.
Spar allows for loops to be unrolled explicitly, by annotating the loop with

the inline modifier. Such an inline for statement must have a cardinality
list with only compile-time constants.

The inline for statement is necessary for operations on tuples, and is
also useful to force loop unrolling for performance reasons. For example, the
following loop:

inline for( i :- 0:4 ) a[i] = i;

is expanded by the compiler to:

a[0] = 0;

32



a[1] = 1;
a[2] = 2;
a[3] = 3;

10.2 Parallel programming

Spar/Java is intended for parallel programming. This requires the identification
of code fragments that can be executed in parallel. A Spar/Java compiler will
not try to determine these itself, but expects the programmer to describe them
explicitly using special language constructs.

To expose parallelism to the compiler, two new language constructs are pro-
vided, the each statement, and the foreach statement.

10.3 The each statement

The each statement is similar to the par statement of Compositional C++[3].
Given a block such as:

each { s1; s2; }

The statements s1 and s2 are executed in arbitrary order. Once a statement is
started, it must be completed before the next statement can be started. Thus,
the compiler will choose one of the execution orders s1; s2;, or s2; s1;, even
if the statements are compound.

10.4 The foreach statement

The foreach statement is a parameterized version of the each statement of the
previous section. For example:

public class foreachcard {
public static void main(){

int sum = 0;

foreach(i :- 0:10 )
sum += i;

System.out.println( sum );
}

}

The program will print:

45

Similar to the each statement, once an iteration is started, it must be completed
before the next iteration can be started. Thus, iterations cannot influence each
other during their execution.

To allow easier analysis, the foreach has a range syntax rather than the
traditional while-like syntax of the for statement of C.

For reasons of orthogonality Spar allows the range syntax in the for state-
ment. The compiler is not required to attempt any parallelization, even for
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obvious cases. Spar does not support the while-like syntax in the foreach
statement, since the behavior of such a loop cannot be defined properly.

statement :
for Cardinalities Statement
foreach Cardinalities Statement

Cardinalities:
( Cardinalitylist ,opt )

Cardinality :
Identifier :- low-Expressionopt : up-Expression
Identifier :- low-Expressionopt : up-Expression : strd-Expression
( Cardinality )

A scalar cardinality specifies an iteration range, consisting of a lower bound
and an upper bound, and the name of the variable that iterates of this range. If
the lower bound is left unspecified, 0 is assumed. If the stride is left unspecified,
1 is assumed.

A scalar cardinality declares the iterator variable as a final int variable,
with the body of the foreach as scope.

The type of the lower bound, upper bound, and stride expressions must be
an integral type, or a compile-time error occurs. Each expression undergoes
unary numeric promotion (see JLS2 5.6.1). The stride should be positive. A
negative or zero stride may lead to a compile-time error, if the compiler can
detect it.

For example, the three loops in the following program all have the same
result (every array element ai is filled with i). However, the execution order of
the statements may be different in the foreach, compared to the for versions
of the loop.

public class loops {
public static void main(){

int a[] = new int[12];

foreach( i :- 0:a.length )
a[i] = i;

for( i :- 0:a.length )
a[i] = i;

for( int i=0; i<a.length; i++ )
a[i] = i;

}
}

A cardinality list can contain more than one cardinality. For example, the
following program:

public class multicard {
public static void main(){

for( i:- 2:5, j:- 1:3 ){
System.out.print( i + "~" + j + " " );

}
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System.out.println();
}

}

contains a for loop with two cardinalities in its cardinality list. This program
produces the following output:

2~1 2~2 3~1 3~2 4~1 4~2

The range of a foreach can also be described as a vector. For example, a
two-dimensional array b would be initialized completely with:

foreach( i:-[0,0]:b.getSize() ){
(b@i).init();

}

Note that this is not easy to express in the traditional for(;;) syntax, since
there is no ordering comparison defined on vectors.

If a lower bound or stride vector is specified, it must have the same length
as the upper bound.
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Chapter 11

Expressions

11.1 Array Creation Expressions

Since Spar allows multi-dimensional arrays, the syntax for array creation ex-
pressions has been extended somewhat. In particular, the syntax of ArrayCre-
ationExpression has been generalized to:

ArrayCreationExpression:
new PrimitiveType Vectors Dimsopt
new PrimitiveType Vectors ArrayInitializer
new ClassOrInterfaceType Vectors Dimsopt
new ClassOrInterfaceType Vectors ArrayInitializer
new TupleType Vectors Dimsopt
new TupleType Vectors ArrayInitializer

Vectors:
Vector
Vectors Vector

Vector :
[ Expressionlist ]:

For example, the following program creates and fills a 2-dimensional array:

public class create2d {
public static void main(){

int a[*,*] = new int[4,4];

for( i :- 0:4, j :- 0:4 ){
a[i,j] = i+j;

}
}

}

11.2 Array Access Expressions

Obviously, array access expressions are more general than specified in JLS2
15.13, since Spar supports multi-dimensional arrays.
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In Spar array subscripting is considered an operation of a vector expression
on an array. It is expressed with the array subscript operator @, with the syntax:

OperatorExpression:
OperatorExpression @ OperatorExpression

The left-hand side of the expression should be an array, the right-hand side
of the expression should be a tuple of the correct length. Each element of the
tuple should be of type int; short, byte, or char elements may also be used,
because they are subjected to unary numeric promotion, and become int values.
Elements of type long or other non-integral types are not allowed. For example,
the program:

public class vecsubscr {
public static void main(){

int[*,*] A = new int[3,4]; // A 2-dim array.

for( v :- [0,0]:A.getSize() ){
A@v = 0;

}
[int^2] i = [1,1];
A@i = 1;
A@[2,3] = 2;
for( x :- 0:A.getSize(0) ){

for( y :- 0:A.getSize(1) ){
System.out.print( A[x,y] + " " );

}
System.out.println();

}
}

}

generates the following output:

0 0 0 0
0 1 0 0
0 0 0 2

For explicit vector expressions it is allowed to omit the @ operator, in which
case the expression reduces to the traditional subscript expression.

ArrayAccess:
Name Vector
PrimaryNoNewArray Vector

Vector :
[ Expressionlist ]

11.3 Unary operators

All unary operators also work on tuples. The operator is applied to each element
of the tuple. For example, the program:
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public class unarytuple {
public static void main(){

[int^3] a = [1,2,3];
[int^3] b = -a; // Unary operator on tuple ’a’
System.out.println( b[0] + " " + b[1] + " " + b[2] );

}
}

generates the following output:

-1 -2 -3

11.4 Binary operators

All binary operators except instanceof, ||, and && also work on tuples. The
operator is applied to each element of the tuple. If one of the operands is
a scalar, it is promoted to a tuple through tuple conversion, see §4.1.3. For
example, the program:

public class binarytuple {
public static void main(){

[int^3] a = [1,2,3];
[int^3] b = 2*a;
System.out.println( b[0] + " " + b[1] + " " + b[2] );
[int^3] c = a-2;
System.out.println( c[0] + " " + c[1] + " " + c[2] );
[int^3] d = a*c;
System.out.println( d[0] + " " + d[1] + " " + d[2] );

}
}

generates the following output:

2 4 6
-1 0 1
-1 0 3

11.5 Relational Operators

11.5.1 Type Comparison Operator instanceof

In contrast to Java, Spar never causes a compile-time error on an instanceof
expression (see JLS2 15.20.2) that always evaluates to false. Instead, it simply
replaces the expression with false. Moreover, the type that is compared with
can be an arbitrary type. For primitive types it is guaranteed that the expression
is evaluated to a compile-time constant.

As a further extension, the instanceof can also be used to compare two
types. Such an expression is always evaluated to a compile-time constant.

These extensions result in the following grammar for an instanceof expression:
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InstanceOfExpression:
RelationalExpression instanceof Type
VerboseType instanceof Type

See §5 for the grammar of VerboseType.
The purpose of these extensions is to allow conditional compilation of code

in parameterized classes. In particular, the expression t instanceof Object
tests wether t is a reference type.
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Chapter 12

Pragmas

Pragmas are intended to annotate program elements with information that is
helpful to the compiler. A pragma should never influence the meaning of a pro-
gram1; it should only reduce the compilation or execution time of the program.

Pragmas have the following syntax:

Pragmas:
<$ Pragmalist $>

Pragma:
Identifier
Identifier = PragmaExpression

PragmaExpression:
IntLiteral
FloatLiteral
DoubleLiteral
StringLiteral
true
false
Identifier
@ Identifier
( PragmaExpressions )

PragmaExpressions:
(empty)
PragmaExpressions PragmaExpression

The following program demonstrates the use of several types of pragma. It
uses the Spar language construct globalpragma, which is described below. The
pragmas that are shown here suggest a certain interpretation, but they are only
for illustration; it should not be assumed that these pragmas are recognized by
any compiler engine.

1But note that the actual results of the program may differ if nondeterministic constructs
(each or foreach) are used. Although the actual behavior of the program may have changed,
its meaning has not.
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globalpragmas <$
entrypoint, // A ’flag’ pragma, without an expression
processor=pentium2, // A pragma with a name as value
boundscheck=false, // A pragma with a boolean value
optimizations=3, // A pragma with a numerical value
listingfile="pragmas.lst", // A pragma with a string value
processors=(1 3 5), // A pragma with a list of numbers as value

// A pragma with a more complicated structure as value
mapping=(lambda (i j) (mod ((sum i j)) 3))

$>;

public class pragmas {
public static void main( String[] args ) {

int sum = 0;

// A pragma that uses the ’@’ notation to refer to a variable
// in the program (in this case variable ’i’).
foreach( i :- 0:23 ) <$ on=(mod @i 8) $> {

sum += i;
}

}
}

12.1 Operators and subscripts in pragmas

As a convenience for the user, Spar allows the use of a number of binary oper-
ators. These binary operator expressions are internally translated to a normal
pragma expression list. Spar also supports subscript-like expressions.

PragmaExpression:
PragmaExpression PragmaBinop PragmaExpression
PragmaExpression [ PragmaExpressionlist ]

PragmaBinop: one of
+ - * / % == != <= < >= >

For example, the expression a+b is translated to (sum a b). Operators are left-
binding, which means that a+b-c is translated to (subtract (sum a b) c).
The expression a[1,2] is translated to (at a 1 2).

Repeated use of the same operator, for example a+b+c, would result in nested
lists such as (sum (sum a b) c). For convenience sake such expressions are
stratified into a single long list of operands. Thus, (sum a b c) is produced
instead. This also applies if the nested expression is already in list format. Thus,
(sum a b)+c is also translated to (sum a b c).

Operators have the usual precedence, so that a+b*i is translated to (sum a (prod b i)),
because the * operator as a higher precedence than the + operator.

You can use brackets to enforce operator precedence, but these brackets are
not treated specially. For example, (a+b)*i is translated to (prod ((sum a b)) i).
Note the extra pair of brackets.
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The supported operators, with their precedence and the expanded operator
name, are listed below.

precedence operator name
0 + sum
0 - subtract
1 * prod
1 / div
1 % mod
2 == eq
2 != ne
2 <= le
2 < lt
2 >= ge
2 > gt
3 [] at

For example:

globalpragmas <$
entrypoint, // A ’flag’ pragma, without an expression
processor=pentium2, // A pragma with a name as value
boundscheck=false, // A pragma with a boolean value
optimizations=3, // A pragma with a numerical value
listingfile="pragmas.lst", // A pragma with a string value
processors=(1 3 5), // A pragma with a list of numbers as value

// A pragma with a more complicated structure as value
mapping=(lambda (i j) (mod ((sum i j)) 3))

$>;

public class pragmas {
public static void main( String[] args ) {

int sum = 0;

// A pragma that uses the ’@’ notation to refer to a variable
// in the program (in this case variable ’i’).
foreach( i :- 0:23 ) <$ on=(mod @i 8) $> {

sum += i;
}

}
}

12.2 Global pragmas

It is possible to annotate an entire program with a set of pragmas through the
use of global pragmas:

GlobalPragmas:
globalpragmas Pragmas ;
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A global pragma declaration should be placed at the very start of a compilation
unit, as shown in the following additional grammar rule for a compilation unit:

CompilationUnit :
GlobalPragmas PackageDeclarationopt ImportDeclarationsopt
TypeDeclarationsopt

For example:

globalpragmas <$ boundscheck=false $>;

public class globpragmas {
public static void main( String[] args ) {
}

}

12.3 Class and interface pragmas

Pragmas can be attached to class and interface declarations.

ClassDeclaration:
Pragmasopt ClassModifiersopt class Identifier TypeParameters Superopt
Interfacesopt ClassBody

InterfaceDeclaration:
Pragmasopt InterfaceModifiersopt interface Identifier TypeParameters
ExtendsInterfacesopt InterfaceBody

For example:

<$ entrypoint $> public class classpragmas {
public static void main( String[] args ) {
}

}

Class and interface pragmas are only maintained in the frontend, and are
not passed on to the parallelization engines. The frontend does not use these
pragmas either; they are only provided for interpretation by a future version of
the frontend.

12.4 Expression pragmas

Pragmas can be attached to expressions.

Expression:
Pragmas Expression

Pragma expressions have a very low precedence, so an expression such as <$ volatile $> a+b
is interpreted as <$ volatile $> (a+b). For example:
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public class exprpragmas {
public static void main( String[] args ) {

int x = <$ constant $> 42;
}

}

12.5 new expression pragmas

Pragmas can be attached to array creation expressions. They are mainly in-
tended for distribution annotations for the arrays that are created.

Note that in contrast to most other pragmas, these follow after the expression
they annotate. This is to allow them to be attached to each vector in the array
creation expression.

ArrayCreationExpression:
new Type Vectors Dimsopt

Vectors:
Vector Pragmasopt
Vectors Vector Pragmasopt

For example:

public class newpragmas {
public static void main( String[] args ) {

int a[] = new int[42] <$ distribution="[block]" $>;
}

}

12.6 Class and interface member pragmas

Pragmas can be attached to class and interface members.

ClassBodyDeclaration:
Pragmasopt StaticInitializer
Pragmasopt ConstructorDeclaration
Pragmasopt Block

FieldDeclaration:
Pragmasopt Modifiersopt Type VariableDeclarators ;

MethodDeclaration:
Pragmasopt MethodHeaderopt MethodBody

AbstractMethodDeclaration:
Pragmasopt MethodHeaderopt ;

For example:
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public class memberpragmas {
<$ replicated $> final static int n = 3;
<$ entrypoint $> public static void main( String[] args ) {
}

}

Pragmas on class instance variables are only maintained in the frontend, and
are not passed on to the parallelization engines. The frontend does not use these
pragmas either; they are only provided for interpretation by a future version of
the frontend.

12.7 Type pragmas

Pragmas can be attached to types.
Note that in contrast to most other pragmas, these follow after the expression

they annotate. This is to distinguish them from declaration pragmas.

Type:
Type Pragmas

Dim:
[ ] Pragmasopt
[ SizeList ,opt ] Pragmasopt

For example:

public class typepragmas {
public static void main( String[] args ) {

int <$ range=(0 20) $> x = 10;
}

}

12.8 Declaration and statement pragmas

Pragmas can be attached to local declarations and statements.

Statement :
Pragmasopt LabelName : Statement
Pragmasopt UnlabeledStatement

LocalVariableDeclarationStatement :
Pragmasopt LocalVariableDeclaration ;

ExplicitConstructorInvocation:
Pragmasopt this ( ArgumentListopt ) ;
Pragmasopt super ( ArgumentListopt ) ;
Pragmasopt Primary . super ( ArgumentListopt ) ;

For example:
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public class statementpragmas {
public static void main( String[] args ) {

<$ dummy $> int x = 42;
foreach( i :- 0:20 ) <$ on=@i%5 $> {

x += i;
}

}
}

12.9 Formal parameter pragmas

Pragmas can be attached to formal parameter declaration.

FormalParameter :
Pragmasopt Modifiersopt Type VariableDeclaratorId
Pragmasopt Modifiersopt type VariableDeclaratorId

For example:

public class formalpragmas {
public static void main( <$ replicated $> String[] args ) {
}

}
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Chapter 13

The standard library

13.1 The Class java.lang.Complex

The class Complex is the wrapper class for the complex primitive type, similar
to standard Java classes such as java.lang.Double. It also provides some math
functions similar to those in java.lang.Math.

public final class Complex extends Number {
public Complex(complex value);
public Complex(String s) throws NumberFormatException;
public String toString();
public boolean equals(Object obj);
public int hashCode();
public int intValue();
public long longValue();
public float floatValue();
public double doubleValue();
public complex complexValue();
public static String toString(complex value);
public static Complex valueOf(String s) throws NumberFormatException;
native public static complex sin(complex a);
native public static complex cos(complex a);
native public static complex tan(complex a);
native public static complex sqrt(complex a);
native public static complex exp(complex a);
native public static complex log(complex a);
native public static double abs(complex a);
native public static double arg(complex a);
native public static double norm(complex a);
native public static complex polar( double rho, double theta );
native public static complex conj(complex a);
native public static double real(complex a);
native public static double imag(complex a);
native public static complex pow(complex a, complex b);

}
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13.1.1 public Complex(complex value)

This constructor initializes a newly created Complex object so that it represents
the primitive value that is the argument.

13.1.2 public Complex(String s)

Interpret the given string as a complex number, and initialize a newly created
Complex object with the value.

13.1.3 public String toString()

The primitive complex value represented by this Complex object is converted to
a string exactly as if by the method toString on one argument (see §13.1.11).

Overrides the toString method of Object.

13.1.4 public boolean equals(Object obj)

The result is true if and only if the argument is not null and is a Complex
object that represents the same complex value as this Complex object.

Overrides the equals method of Object.

13.1.5 public int hashCode()

For the moment, a rather weak hashing algorithm is used.
Overrides the hashCode method of Object.

13.1.6 public int intValue()

The real part of the complex value represented by this Complex object is con-
verted to type int and the result of the conversion is returned.

Overrides the intValue method of Object.

13.1.7 public long longValue()

The real part of the complex value represented by this Complex object is con-
verted to type long and the result of the conversion is returned.

Overrides the longValue method of Object.

13.1.8 public float floatValue()

The real part of the complex value represented by this Complex object is con-
verted to type float and the result of the conversion is returned.

Overrides the floatValue method of Object.

13.1.9 public double doubleValue()

The real part of the complex value represented by this Complex object is re-
turned.

Overrides the doubleValue method of Object.
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13.1.10 public complex complexValue()

The complex value represented by this Complex object is returned.

13.1.11 public static String toString(complex value)

The argument is converted to a readable string format as if the expression

"("+Double.toString(real(v))+","+Double.toString(imag(v))+")"

is evaluated.

13.1.12 public static Complex valueOf(String s)

Given a string, interpret this as a complex number, and return the value.

13.1.13 public static complex sin(complex a)

This method computes an approximation to the sine of the argument.

13.1.14 public static complex cos(complex a)

This method computes an approximation to the cosine of the argument.

13.1.15 public static complex tan(complex a)

This method computes an approximation to the tan of the argument.
Note that this method is not implemented in some versions of the of the

C++ complex libraries, and we rely that library.

13.1.16 public static complex sqrt(complex a)

This method computes an approximation to the square root of the argument.

13.1.17 public static complex exp(complex a)

This method computes an approximation to the exponential function of the
argument.

13.1.18 public static complex log(complex a)

This method computes an approximation to the natural logarithm of the argu-
ment.

13.1.19 public static double abs(complex a)

For an argument a = x + i · y, this method computes an approximation to√
x2 + y2.

13.1.20 public static double arg(complex a)

This method computes an approximation to the angle of the argument.
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13.1.21 public static double norm(complex a)

For an argument a = x + i · y, this method computes x2 + y2. In other words,
it computes the square of the value returned by the method abs.

13.1.22 public static complex polar( double rho, double
theta )

Given a magnitude rho and an angle theta return the complex number con-
structed from these polar coordinates.

13.1.23 public static complex conj(complex a)

This method returns the conjugate of the argument. In other words, for an
argument a = x + i · y it returns the value a = x + i · −y.

13.1.24 public static double real(complex a)

This method returns the real part of the argument.

13.1.25 public static double imag(complex a)

This method returns the imaginary part of the argument.

13.1.26 public static complex pow(complex a, complex b)

This method computes an approximation to the mathematical operation of rais-
ing the first argument to the power of the second argument.

13.2 The Class java.lang.String

Next to the methods described for java.lang.String, Spar provides one other.

13.2.1 public static String valueOf(complex d)

A string is created and returned. The string is computed exactly as if by the
method Complex.toString of one argument (see §13.1.11).

13.3 The Interface spar.lang.Array

Spar allows the subscript operators ‘[]’ and ‘@’ to work on any class, provided
that the class implements the method getElement or storeElement, depending
on the context. Although this is not enforced by Spar, it is recommended that
such classes implement the interface Array, defined as follows:

interface Array(| type t, int rank |)
{

t getElement( [int^rank] index ) throws IndexOutOfBoundsException;
void storeElement( [int^rank] index, t elm )

throws IndexOutOfBoundsException, ArrayStoreException;
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[int^rank] getSize();
}
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Appendix A

Using the Timber compiler

This appendix describes how to use the Timber compiler, which implements
Spar/Java.

A.1 Preparations

Timber is available for downloading from the Spar website. See
www.pds.twi.tudelft.nl/timber/downloading.html for instructions on
downloading and installation.

In this chapter we assume that the compiler has been installed.

A.2 Running the Spar compiler

It is traditional to check out a compiler by compiling and running a program that
prints “Hello world”. For Spar (and Java), the following program is sufficient:

public class hello {
public static void main(){

System.out.println( "Hello world" );
}

}

To verify that the compiler is working as it should, create a file hello.spar
with this contents1, and run the compiler with:

spar hello.spar -o hello

This should produce a new executable hello. If you run it:

./hello

It should produce the familiar greeting.
1Remember that in Java it is required that a public class hello resides in a file hello.java.

A Spar/Java compiler also allows it to reside in a file hello.spar.
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A.2.1 Packages, compilation units and filenames

Each Spar compilation unit is stored as an individual source file. This source
file must have a name ending in .java, .jav or .spar. Moreover, each public
class or interface <object> that is not an inner class or interface must reside in
a file with the name <object>.java or <object>.spar.

If the compilation unit resides in an explicitly named package (that is, if
it has a package statement), it must reside in a subdirectory that corresponds
with the package name. The mapping between the package name and the sub-
directory name is the same as the mapping is described in JLS2 §7.2.1.

The subdirectory that corresponds with the package must reside in one of
the directories in the search path of the Timber compiler. The compiler searches
the following directories in the following order:

1. All paths specified with the -sourcepath, -classpath or -P options from
left to right.

2. The directory $prefix/lib/sparlib2, where $prefix is the directory
that was specified as installation directory prefix during installation of
the compiler.

3. The directory $KAFFEROOT/libraries/javalib, where $KAFFEROOT rep-
resents the value of the environment variable of that name.

4. If it is set, all directories in the environment variable SPARPATH. The di-
rectories must be separated with ‘:’.

For example, let us assume that the environment variable
KAFFEROOT contains /usr/local/kaffe-1.0.6, the installation pre-
fix was /usr/local, and the environment variable SPARPATH contains
/users/leo/sparpackages:/users/frits/sparpackages. If the compiler
now wants to compile a class ZipDecoder in the package pds.utils, it will try
to open the following files in the given order:

• /usr/local/lib/sparlib/pds/utils/ZipDecoder.spar

• /usr/local/lib/sparlib/pds/utils/ZipDecoder.java

• /usr/local/kaffe-1.0.6/libraries/javalib/pds/utils/ZipDecoder.spar

• /usr/local/kaffe-1.0.6/libraries/javalib/pds/utils/ZipDecoder.java

• /users/leo/nl/pds/utils/ZipDecoder.spar

• /users/leo/nl/pds/utils/ZipDecoder.java

• /users/frits/nl/pds/utils/ZipDecoder.spar

• /users/frits/nl/pds/utils/ZipDecoder.java

If the compilation unit resides in the default package, (it does not have a
package statement), an empty package name is assumed.

If the compiler now wants to compile a class ZipDecoder in the default
package, it will try to open the following files in the given order:

2This only applies to the installed version of the compiler; for the development version
another path is used.
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• /usr/local/lib/sparlib/ZipDecoder.spar

• /usr/local/lib/sparlib/ZipDecoder.java

• /usr/local/kaffe-1.0.6/libraries/javalib/ZipDecoder.spar

• /usr/local/kaffe-1.0.6/libraries/javalib/ZipDecoder.java

• /users/leo/nl/ZipDecoder.spar

• /users/leo/nl/ZipDecoder.java

• /users/frits/nl/ZipDecoder.spar

• /users/frits/nl/ZipDecoder.java

Note that searching for a class in the default package rarely happens: a class or
interface in the default package is only sought if a compilation unit in the default
package refers to an unknown class or interface with an unqualified name.

A.2.2 Spar features are only supported in .spar files

The Timber compiler only supports the Spar language extensions in files that
have the suffix .spar. For files with the suffix .java of .jav, only the standard
Java language constructs are supported. In particular, the additional keywords
used in Spar (such as inline and foreach) are only recognized in .spar files.
In .java files they can be used as ordinary variables.

A.2.3 Command-line options of the spar script

The spar script supports the following options (there are more):

--help Show a help text.
--keepfiles Keep intermediate files.
--nocards Do not allow cardinality lists.
--nocomplex Do not recognize the keyword complex.
--nodelete Do not recognize the keyword __delete.
--noeach Do not recognize the keywords each and foreach.
--noinline Do not recognize the keyword inline.
--noinlining Do not automatically inline any methods or constructors.
--nopragma Do not allow pragmas.
--strict-analysis Analyze definite assignment exactly as in Java.
--noprint Do not recognize the __print and __println keywords.
--java Do not recognize any Spar extensions.
--java-array Only allow Java array declarations.
-h Show a help text.
-o <file> Write output (executable) to the given file.

The flag --strict-analysis specifies that analysis of definite assignment of
variables as described in JLS2 §16 is strictly adhered to. Without this flag the
compiler does a more sophisticated analysis of the program, and may conclude
that a variable is always assigned to before it is used, where a strictly adhering
compiler would report that the variable may be used before being assigned.

For example, JLS2 Chapter 16 specifies that the code
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{
int k;
int n = 5;
if (n > 2)

k = 3;
System.out.println(k);

}

must cause a compile-time error, since k may be used before it is assigned.
By default, the Timber compiler will not produce this error message, since it
knows that the assignment k = 3 is always executed. By specifying the the
--strict-analysis flag, the compiler will adhere to strict Java analysis se-
mantics, and will produce the error message.
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Appendix B

Restrictions and
incompatibilities of version
2.0 of the Timber compiler

In this appendix we describe the restrictions and incompatibilities of version 2.0
of the Timber compiler. The restrictions and incompatibilities in this appendix
are caused by the compiler, and are not a fundamental consequence of extending
Java with the extensions of Spar. Thus, a different compiler for Spar/Java does
not necessarily have the same restrictions and incompatibilities.

As much as possible, this appendix follows the order of the Java Language
Specification version 2 [7] is followed.

B.1 Types, values and variables

B.1.1 The string primitive type

As an extension to Java, the Timber compiler supports the primitive type
string. This type is mainly intended as a light-weight representation of string

constants. It directly maps to the strings in the Vnus intermediate representa-
tion.

There is an implicit widening conversion from string to String.

Operations on strings

The Timber compiler provides a number of operators that act on strings:

• The numerical equality operators == and !=; they result in a value of type
boolean.

• The string concatenation operator +, which, when given two string
constants, creates a new string constant.

• The string concatenation operator +, which, when given a String operand
and a string operand, will convert the string operand to a String
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through internalization, (see JLS2 3.10.5), and then produces a newly
created String by concatenating the two strings.

For example, the program1:

public class vnusstring {
public static void main(){

__string s = "Hello "+"world";
__println( 1, s );

}
}

generates the following output:

Hello world

B.1.2 Unicode

The Timber compiler supports Unicode encoding of string and character con-
stants, but currently characters are stored as 8-bit values.

B.2 Conversions and promotions

B.2.1 Kinds of Conversion

Widening Reference Conversions

JLS2 5.1.4 describes conversions from array types to types Object. Clonable,
and java.io.Serializable. Although these conversions are accepted, they are
in fact not implemented, and cause an error later in the compilation process.

In addition to the widening reference conversions of JLS2 5.1.4, the Timber
compiler supports the following widening reference conversions:

• From a string to type String.

• From a string to type Object.

Both conversions cause the value to be converted to a String through internal-
ization (see JLS2 3.10.5).

Narrowing Reference Conversions

Although conversions from type Object to array types are accepted, they are
in fact not implemented, and cause an error later in the compilation process.

B.2.2 Casting conversion

Casts between classes are currently not checked at run-time. This causes the
Timber compiler to accept conversions that would fail in Java. See JLS2 5.5 for
a description of casting conversion.

1See §B.8.4 for an explanation of the println statement.
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B.3 Classes

B.3.1 transient and volatile fields

Although a field may be marked transient or volatile, this information is
not used in any way by the compiler.

B.3.2 synchronized and strictfp methods

Although a method may be marked synchronized or strictfp, this informa-
tion is not used in any way by the compiler.

B.4 Interfaces

B.4.1 transient and volatile fields

Although a field may be marked transient or volatile, this information is
not used in any way by the compiler.

B.4.2 synchronized and strictfp methods

Although a method may be marked synchronized or strictfp, this informa-
tion is not used in any way by the compiler.

B.5 Arrays

In Java, arrays are treated as special subclasses of the class Object, but in the
current Timber compiler they are treated as independent types. As much as
possible the illusion of a subclass is maintained, but there are a few incompat-
ibilities. In particular, the clone(), equals(), and getClass() methods on
arrays are not yet supported.

B.6 Exceptions

B.6.1 Compile-Time Checking of Exceptions

Compile-time checking of Exceptions, as described in JLS2 11.2, is currently
only partially implemented. It is checked whether a method or constructor
only throws checked exceptions that are permitted by the throws clause of that
method or constructor.

What is not yet enforced is that the throws clause of an overriding method
cannot allow a wider range of checked exceptions than the method it overrides.

B.6.2 Standard Runtime Exceptions

The following exceptions are never thrown, although specified in the Java Lan-
guage Specification:

• ArithmeticException. In the current Timber compiler, the behavior of
the program is unspecified.
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• ArrayStoreException. In the current Timber compiler, such violations
are never detected at run-time.

• ClassCastException. Currently all casts are accepted.

B.6.3 Loading and Linkage exceptions

See JLS2 11.5.2. Because of the nature of the current Timber compiler, the ex-
ceptions ClassCircularityError, NoClassDefFound, IllegalAccessError,
InstantiationError, NoSuchFieldError, NoSuchMethodError,
ClassChangeError, VerifyError, and AbstractMethodError are never
thrown.

The ExceptionInInitializerError is never thrown, instead the original
exception is propagated.

B.6.4 Virtual Machine Errors

See JLS2 11.5.2. The exceptions InternalError, OutOfMemoryError, StackOverflowError,
and UnknownError are never thrown.

B.7 Execution

Since Timber is a static whole-program compiler that directly generates machine
code, a number of JLS2 sections on virtual machine behavior do not apply.

Initialization of classes and interfaces, and creation of new class instances is
done according to the Java language specification.

B.7.1 Virtual Machine Start-Up

The Timber implementation does not have a virtual machine to start up.

B.7.2 Loading of Classes and Interfaces

Conceptually, the Timber implementation has loaded all class methods and con-
structors that may be reachable as far as a static compiler can determine. During
execution of the program, it is not allowed to load new classes or interfaces.

B.7.3 Linking of Classes and Interfaces

Conceptually, the Timber implementation already performs linking during the
compilation phase. Since no .class files are ever referenced, no verification of
the binary representation is ever done.

B.8 Blocks and Statements

B.8.1 The switch statement

In contrast to standard Java, in the current Timber compiler each SwitchBlock-
StatementGroup is considered a separate block. This means that in contrast
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to Java variable declarations are not visible in the SwitchBlockStatementGroups
below it. For example, the following code is correct in Java, but not in Timber:

int n = 3;
switch( n ){

case 0:
int x = 42;
break;

case 1:
x++; // For Timber, x is not visible here.

default:
break;

}

This restriction is not likely to change in the near future. The most important
reason is that translating this correctly would have a significant impact on the
entire compilation path. Considering the extreme ugliness of this construct, this
restriction may be considered a feature instead of a bug.

B.8.2 The synchronized statement

Although the synchronized statement is recognized, it is translated as if it is
a simple statement block. No locking is performed.

B.8.3 The try statement

Timber currently does not execute a finally clause when it executes a break
statement. For example, the following program:

public class breakfinally {
public static void main( String args[] ){

System.out.println( "Start" );
outer:

for( int j=0; j<3; j++ ){
try {

for( int i=0; i<3; i++ ){
System.out.println( "i="+i+" j="+j );
if( i == 1 && j == 1 ){

break outer;
}

}
}
finally {

System.out.println( "Hello from finally" );
}

}
System.out.println( "Stop" );

}
}
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will produce the following output:

Start
i=0 j=0
i=1 j=0
i=2 j=0
Hello from finally
i=0 j=1
i=1 j=1
Stop

In the Java version a second line “Hello from finally” would be printed, just
before the line with “Stop”, since when a break passes a finally clause, it
should execute that clause.

B.8.4 The debugging print statements

For development and testing purposes, the Spar compiler supports the __print
and __println statements, which have the following syntax:

Statement :
__print ( ArgumentList ) ;
__println ( ArgumentList ) ;

The first argument in the list must be of type int. This argument denotes the
output stream: 1 for the standard output stream, or 2 for the standard error
stream. The behavior for other values is unspecified.

The remaining arguments should be of a primitive type2. A textual repre-
sentation of these arguments is written to the given stream.

In the __println statement, the string "\n" is written to the output stream
after all arguments have been written.

For example, the following program:

public class vnushello {
public static void main(){

__print( 1, "Hello " );
__println( 1, 1, ",", true, " world" );

}
}

will produce the following output:

Hello 1,TRUE world

The use of these statements is not recommended. They are only documented
here because, for performance reasons, they are used in many examples and
tests.

2Remember that string constants are of type string, and hence are of a primitive type.
Type String, on the other hand, is not a primitive type.
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B.8.5 The delete statement

The delete statement tells the runtime system to delete the given element.
For example:

public class delete {
public static void main(){

short b[*,*] = new short[6,8];
int c[*] = new int[] { 1, 2, 3, 4 };

// ... Operations go here ...

__delete b;
__delete c;

}
}

The __delete statement is an internal statement, and should not be used
in ordinary programs. It is only listed for completeness.

B.9 Expressions

B.9.1 FP-strict Expressions

In contrast to the behavior described in JLS2 15.4, the current Spar implemen-
tation does not support FP-strict evaluation.

B.9.2 Expressions and Run-Time checks

In contrast to the behavior described in JLS2 15.5, Spar does not currently
do any run-time checks on the correctness of a type. This means that if in
the execution of a Spar a run-time check is required, the program will behave
differently from a Java program:

• In a cast it is not checked whether the actual source type is compatible
with the target type specified in the cast expression. Instead, such a cast
is always permitted.

• In an assignment to an array component of reference type, no checking is
done.

B.9.3 Normal and Abrupt Completion of Evaluation

Currently most of the causes for abrupt termination that are listed in JLS2 15.6
do not lead to the behavior specified there. Instead, the behavior of the program
is unspecified. In particular, in some cases it may lead to abrupt termination of
the program, in other cases evaluation of the expression may complete normally,
perhaps something else happens.
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B.9.4 Primary Expressions

Class Literals

The expression <type>.class, as described in JLS2 15.8.2, is correctly parsed,
but only partially supported. For primitive types the TYPE field of the corre-
sponding wrapper class is accessed, but these currently contain a null pointer.
For example, int.class is replaced by the expression Int.TYPE. The current
compiler initializes this field to null, a future compiler will put something useful
in it.

B.10 Definite assignment

Definite assignment, as described in JLS 16, is mostly implemented, but an
important flaw of the current implementation is that the each statement is not
analyzed properly. For example:

int x, y;
each {

x = 1;
y = x;

}

should cause an error, since it is not guaranteed that x has a value at the
moment that it is used as a value for y. A similar test must be implemented for
the foreach statement.

It has not yet been verified whether the Spar compiler complies with the
definition of definite assignment in the second edition of the JLS.

B.11 Threads and Locks

Threads and locks, as described in JLS2 17, are not implemented.

B.12 The standard library

In the current Timber run-time environment, the method
java.lang.Complex.valueOf(String), and the constructor
java.lang.Complex.Complex(String) are not yet implemented.
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Appendix C

Planned extensions and
modifications

C.1 Tuples and vectors

• Range operations such as v[:] = 0;.

C.2 More conversions to and from tuples

To improve backward compatibility with Java, it is useful to define conversions
between 1-tuples and scalars.

For convenience it is useful to allow a complex number to be cast to a
[double^2] tuple and vice versa. As a further extension, tuple matching on
complex numbers should be supported. For example:

double a, b;
complex c = 12+3i;

[a,b] = c;

Would result in a having the value 12, and b having the value 3.

C.3 Array expressions

An array expression is a shorthand notation for the construction of a (partial)
copy of a given array. For example, the following code will first construct an
array a, and then construct a copy of the first row of a, and assign it to v.

int[*,*] a = {{0,1,2},{3,4,5},{6,7,8}};
int[*] v = a[0,0:a.getSize(1)];

Note that v is a copy of a part of a. Subsequent assignments to elements
of v will not be visible in a. Also note that contrary to array range notations
in other languages, the top of the specified range is the first element not to be
included.
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The usual range shorthands apply: if no start of the range is given, 0 is
assumed, and if no end of the range is given, the size in that dimension is
assumed. Thus the declaration of v in the previous code fragment could be
written as:

int[*] v = a[0,:];

C.4 Array statements

Array statements are a shorthand notation for a foreach statement that is
executed for all elements of a selected range. For example, the code fragment

Block[*,*] a = new Block[5,7];
a[:,:].init();

will invoke the method init on all elements of Block array a.
Note that since this is equivalent to a foreach statement, the init method

of each of the array elements is not invoked in a prescribed order. See section
10.2 for more details.

In a similar way array assignments are a shorthand for repeated assignments.
For example:

int[*,*] a = new int[5,7];

a[:,:] = 0;

will zero the entire array a.
The expression at the right-hand side of the assignment will be evaluated

only once. Thus,

int ix = 0;
int[*,*] a = new int[5,7];

a[:,:] = ix++;

will again zero the entire array a, and will leave ix with the value 1.
Last but not least, array assignments may contain an array at the right-hand

side, instead of a single element. In that case every iteration of the foreach
will use the implicit iteration variable as index for every assignment.

For example:

int ix = 0;
int[*,*] a = new int[5,7];
int[*,*] b = new int a.getSize();

b[:,:] = 1;
a[:,:] = b;

Will copy b into a. The last statement could also be written as:

a[:,:] = b[:,:];
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but a naive compiler would first create a copy of b, and leave it for the garbage
collector.

Array statements never change the size of the array they work on. Any
access that is out of bounds is detected at compile-time or run-time, and causes
an error message or an IndexOutOfBoundsException exception.

Since array statements are shorthands for foreach statements, a Spar com-
piler will probably expand them to the appropriate foreach early in the com-
pilation process. This may burden the task mapper with iteration bodies that
are too small for meaningful mapping. I assume that the task mapper is smart
enough not to map such tasks.

This interpretation of array statements is consistent, easy to understand
and easy to implement, but it is not environmentally friendly: it leaves lots of
garbage. With some analysis, we can prevent actually constructing the array
slice, in many, but not all cases. For example, f(A) and f(A[:]) are different,
because the latter will pass a copy of A. This means that we must rely on an
optimizer for efficient code generation.

Also, the lack of symmetry between right-hand side and left-hand side array
expressions is ugly.

The following code shows some array statements.

int[*] a = [0,1,2,3,4,5,6,7];
int[*] b = new int[8];

b[0:3] = a[1:4];
b[:3] = a[1:4]; // Identical to previous statement
b[:] = a[:]; // All elements are copied.

But the following is not an array statement; it merely copies a reference:

b = a;
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Appendix D

Supported pragmas

In this appendix we describe the pragmas that are currently supported by the
compiler. For each of these pragmas a grammar is given for the allowed values
of the pragma. These grammars describe a strict subset of the general pragma
value syntax. That is, all valid values for these specific grammars are also valid
values for the general syntax, but reverse is not true. In reality the additional
restrictions are not enforced by a parser, but by the engines that handle these
pragmas.

The grammars for the pragmas use a minor extension to the grammar
notation described in JLS2 2.4. The subscripted suffix “seq”, which may appear
after a terminal or nonterminal, indicates a sequence of symbols. A symbol
sequence represents the juxtaposition of an arbitrary number of symbol instances,
without any separators inbetween. For example, grammar rule for a pragma list
expression could be expressed as:

PragmaExpression:
( PragmaExpressionseq )

See also section 12.

D.1 Pragmas for parallelization

D.1.1 The ProcessorType pragma

The ProcessorType pragma is used to declare a processor type and to describe
the processors characteristics (e.g. alignment of data structures and endianness
of primitive types etc.) and capabilities (e.g. whether it contains a FPU etc.).
ProcessorType pragmas must be global.

By making the processor types explicitly visible to the compiler, they can
be used as a sort of type checking mechanism. For instance, if a floating point
operation is mapped onto a DSP which does not support IEEE floating point
operations, the compiler can signal a placement error to the user. They can also
be used to avoid excessive code size by selectively compiling member functions.

A ProcessorType pragma should be written as follows:

ProcessorType-Pragma:
ProcessorType = ( ProcessorTypeSpecseq )
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ProcessorTypeSpec:
( ProcessorType-Identifier Resource-StringLiteral )

The ProcessorType-Identifier is the name of the processor type. The Resource-
StringLiteral specifies the resource where details about the processor can be
found. For example:

<$ ProcessorType=((Gpp "Pentium2") (Dsp "Trimedia")) $>

The strings "Pentium2" and "Trimedia" refer to configuration specifications of
the processors. The way the specification is stored, and format of the specifica-
tion, is left to the implementation.

The current Timber compiler does not use these processor type declarations,
but assumes a single processor array of generic processors. Nevertheless, for
compatibility with future versions it is advisable to explicitly declare a processor
type generic, see the declaration in §s.processors-pragma below.

D.1.2 The Processors pragma

A Processors pragma is used to name and list the processors in a system.
The Processors pragma must be a global pragma. Currently only a single
Processors pragma is allowed in a program; multiple ‘views’ on the hardware,
like in HPF [10], are not allowed. This greatly simplifies the compile-time
analysis, since it avoids alias analysis on processor locations.

A Processors pragma should be written as follows:

Processors-Pragma:
Processors = ( Processor-Identifierseq )

Processor :
( Processor-Identifier ProcessorIdentifier )

ProcessorIdentifier :
ProcessorType-Identifier
( at ProcessorType-Identifier IntLiteralseq )

Each processor type used in the system must have been declared with a ProcessorType
pragma. You can declare either a single processor or an array of processors. The
processor array can have any number of dimensions, but the size in each dimen-
sion must be an integer literal. For example1:

<$ Processors=(( Gpp gpp1) (Dsp dsp1D[4]) (Dsp dsp2D[2,3])) $>

The system specified above consists of a single processor gpp1 of type Gpp, a one-
dimensional processor array dsp1D, and a two dimensional array dsp2D, both of
type Dsp. Each modeled processor corresponds to a single physical processor.

The current Timber compiler restricts the Processors pragma to a single
array entry with processor type “generic”. Thus, the following is a valid pro-
cessors declaration.

globalpragmas <$
ProcessorType=((generic "generic")),
Processors=((P generic[5,5]))

$>
1We use syntactic sugar for the (at ...) expression, see §12.1.
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D.1.3 The on pragma

A Spar/Java program can be annotated at specific points with an on pragma
that allows users to place data and work on specific processors. They may
be nested and are completely independent of the enclosing on pragma specifica-
tion. They can annotate expressions, statements, and member functions. An on
pragma nested inside another on pragma overrules the enclosing specification.

The specific details of code generation for each of the processors, and the
synchronization amongst processor tasks and communication between proces-
sors are left to the compiler.

The syntax of the on pragma is:

on-Pragma:
on = ProcessorReference

ProcessorReference:
Processor-Identifier
( at Processor-Identifier Index-PragmaExpressionseq )

IndexExpression:
IntegerExpression
PlacementFunction

PlacementFunction:
( block Integer-PragmaExpression BlockSize-PragmaExpression )
( cyclic Integer-PragmaExpression BlockSize-PragmaExpression )

An on pragma consists of a ProcessorReference. A ProcessorReference consists
of a Processor-Identifier as defined in the Processors pragma, or an at list con-
taining a Processor-Identifier, followed by zero or more Index-PragmaExpressions
indexing a processor array. The special Processor-Identifier all is used to de-
note all processors; the special Processor-Identifier ‘ ’ (a single underscore) is
used to denote an unspecified placement (‘don’t care’).

Every Index-PragmaExpression in an on pragma must evaluate to an inte-
ger expression. It is explicitly allowed to refer to integer variables in the host
program through an @ expression (see §12). The special identifier ‘ ’ leaves the
placement in the corresponding processor dimension unspecified (‘don’t care’).
The special identifier all specifies a placement on all processors in the corre-
sponding dimension of the processor array.

It is also allowed to use two special functions as an Index-PragmaExpression:
The (block i m) placement function places index i onto processor p = i/m.
The value of p is bounded by the index range allowed in the corresponding
dimension of the processor type (that is, 0 ≤ p < Pext). If no m is specified, the
value is derived from the context: if there are N elements in the corresponding
array dimension, or if there are N iterations in the corresponding iteration range,
m = N/Pext is assumed. The (cyclic i m) placement function places index i
onto processor p = (i/m) mod Pext . If no m is specified, the value 1 is assumed.

For data that is distributed with the block and cyclic functions, the com-
piler is able to apply specific optimizations, see [17] for details. With these
functions, all HPF data mappings can be specified, even alignments, although
templates are not explicitly visible as in HPF.
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Annotating declarations

By annotating a member function, the user can specify the group of processors
allowed to execute the member function. For example:

<$ on dsp1D[@i] $> int myfunc( int i, String s ) { return i+1; }

Annotating statements

A statement annotated with an on pragma will be executed only on the specified
processors. In principle, arbitrary statements may be annotated, but in practice
the annotation is only interesting for code blocks. For example:

foreach( i :- 0:100 ) <$ on=dsp1D[(block @i 25)] $> { a[i] = a[i] + 1; }

The assignment of a[i] is executed on processor dsp1[i/25]. In other words,
the complete iteration space is divided into blocks of size 25, and each block is
executed by a different processor.

Annotating expressions

In principle, any expression can be annotated with an on pragma. This is espe-
cially useful for a new expression, since this not only specifies the placement of
the constructor execution (if not overridden by an annotation on the construc-
tor), but also the placement of the newly constructed class or array instance.
For example, the pragma:

String a = <$ on=gpp1 $> new String();

specifies that a new String must be constructed on gpp1.
In the case of array new expressions, a slightly extended version of the on

pragma is allowed:

on-Pragma:
on = ProcessorReference
on = AbstractProcessorReference

AbstractProcessorReference:
( lambda ( Identifierseq ) ProcessorReference )

The AbstractProcessorReference defines a function that places each element of
the newly constructed array to a processor. In other words, such a function
defines the distribution of the new array.

The sequence of Identifiers contains the formal parameters of the placement
function. The sequence may not contain duplicates, and must contain as many
elements as the rank of the array. All formal parameters are implicitly of type
int. For example, the pragma:

int[*,*] b = <$ on=(lambda (i j) dsp2D[(block j 5),_all]) $> new int[50,50];

specifies that every array element b[i,j] is constructed on processors dsp2D[(block j 5),_all].
The all expression in the second dimension means that the elements are repli-
cated in the second dimension of the processor array.

Note that since the formal parameter i is not used in the distribution ex-
pression, the first dimension of the array does not influence the distribution of
an element.
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D.2 Pragmas for optimization

D.2.1 The inline pragma

A method or constructor that is labeled with the inline pragma will be declared
inline in the generated C++ code. This annotation is separate from the inline
modifier, which requests the Spar compiler to inline the method or constructor.
Thus, a method

inline max( int a, int b ){ return a>b?a:b; }

Will be inlined, if possible, by the Spar compiler. A method

<$ inline $> max( int a, int b ){ return a>b?a:b; }

will be inlined, if possible, by the C++ compiler.
The compiler will annotate a method with the inline modifier with the

inline pragma.

71



Bibliography

[1] R.T. Boute. Funmath: towards a general formalism for system descrip-
tion in engineering applications. In P. P. Silvester, editor, Advances in
Electrical Engineering Software, pages 215–226. Computational Mechanics
Publications, Southampton, and Springer-Verlag, Berlin, August 1990.

[2] Mary Campione and Kathy Walrath. The Java Tutorial. The Java Series.
Addison-Wesley, Reading, Massachusetts, August 1996.

[3] K. Mani Chandy and C. Kesselman. CC++: A declarative concurrent
object oriented programming notation. Technical report, California Institue
of Technology, September 1992.
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