|EEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996 897

An Implementation Framework for HPF
Distributed Arrays on Message-Passing
Parallel Computer Systems

- Kees van Reeuwijk, Will Denissen, Henk J. Sips, and Edwin M.R.M. Paalvast

Abstract—Data paralle! languages, like High Performance Fortran (HPF), support the notion of distributed arrays. However, the
implementation of such distributed array structures and their access on message passing computers is not straightforward. This
holds especially for distributed arrays that are aligned to each other and given a block-cyclic distribution.

In this paper, an implementation framework is presented for HPF distributed arrays on message passing computers. Methods
are presented for efficient (in space and time) local index enumeration, local storage, and communication.

Techniques for local set enumeration provide the basis for constructing local iteration sets and communication sets. It is shown
that both local set enumeration and local storage schemes can be derived from the same equation. Local set enumeration and local
storage schemes are shown to be orthogonal, i.e., they can be freely combined. Moreover, for linear access sequences generated
by our enumeration methods, the local address calculations can be moved out of the enumeration loop, yielding efficient local

memory address generation.

The local set enumeration methods are implemented by using a relatively simple general transformation rule for absorbing
ownership tests. This transformation rule can be repeatedly applied to absorb multiple ownership tests. Performance figures are
presented for local iteration overhead, a simple communication pattern, and storage efficiency.

Index Terms—HPF, message passing, message aggregation, distributed arrays, parallel computers.

1 INTRODUCTION

HIS paper describes a method to implement HPF (High

Performance Fortran) [1] distributed arrays on message
passing parallel computer systems. The implementation
framework has been used as the basis of the HPF compiler
developed in the Esprit project PREPARE [2], [3].

HPF is an extension to Fortran 90 to allow the generation
of efficient programs for parallel computer systems. In this
paper we assume that memory in a computer system is lo-
cal to a processor or a group of processors, and that mes-
sages must be exchanged between the processors to inform
them about changes to the local memory of the other proc-
essors. Such a system is called a message-passing patallel
computer system.

HPF programs are no different from sequential ‘pro-
grams, but annotations advise on how data can be distrib-
uted over the processors. In practice this only makes sense
for arrays, and for operations on arrays. Therefore, HPF
language constructs are focused on distributed arrays and on
array operations: Fortran 90 array intrinsics and loops that
iterate over array elements.

Both Fortran 90 and HPF are large and complex lan-
guages, so to keep things tractable we will describe the im-

o C. van Reeuwijk and H.]J. Sips are with Delft University of Technology,
Advanced School of Computing and Imaging, Lorentzweg 1, 2628 CJ Delft,
the Netherlands. Email: {reeuwijk, henk}@cp.tn.tudelft.nl.

o W. Denissen and E.M. Paalvast are with TNO-TPD, PO Box 155, 2600
Delft, the Netherlands. Email: den-wja@tpd.tno.nl.

Manuscript received Dec. 6, 1994. }
For information on obtaining reprints of this article, please send e-mail to:
transpds@computer.org, and reference IEEECS Log Number D95207.

plementation of a part of HPF: independent FORALL loops
with linear array access functions on arbitrary aligned and
distributed arrays. Extension to general HPF is sketched,
and includes general FORALLs, multidimensional arrays,
and affine subscript functions with multiple iteration vari-
ables. The PREPARE HPF compiler also contains optimiza-
tions for stencil-type operations (using overlap) and ir-
regular problems [4], [5]. However, treatment of these op-
timizations is beyond the scope of this paper.

1.1 HPF Alignment and Distribution

Array distributions in data-parallel languages such as HPF
are intended to distribute the computational load evenly
over the processors. In its simplest form, an array is divided
into equal parts that are distributed over the available proc-
essors (Fig. 1a). This distribution is called block distribution
of an array. Every processor “owns” a part of a distributed
array, and is responsible for storing that part of the array. It
is also responsible for communicating these elements to
other processors when necessary.

By convention, each processor performs the computations
which modify values of the array elements it owns; this is
called the owner computes rule. In other words, the distribu-
tion of computation is determined by the distribution of the
variable at the left-hand side (abbreviation: lhs) of the com-
putation. As a consequence, the elements at the right-hand
side (abbreviation: ths) must be sent to the processor that
executes the computation. Eor example, in the loop

IHPF$ INDEPENDENT

FORALL(I = 1 : 100) A(I) = B(I)+C(I)

1045-9219/96$05.00 ©1996 IEEE

898 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

iteration I is executed by the owner of A(I), and for each
I, the elements B(I) and € (I) must be sent to the owner
of A(I).

000000000000

processor 0 processor 1 ‘processor 2 processor 3
@
° o processorO processor 1 prvcessorZ processor 3
pr.0 pr.l1 pr.2 pr.3
® ©

Fig. 1. Examples of HPF array distributions. In this example a one
dimensional array of 11 elements, numbered 0 ... 10, is distributed
over four processors. The distributions are block distribution (a), cyclic
distribution (b), and cyclic(2) distribution (c). -

For unconditional computations on an entire array, this
gives a good load balance: Each processor owns the same
number of elements, and must therefore usually perform
the same amount of computation. However, array compu-
tations are not always that simple. In particular, array com-
putations often work on only part of the array, and there-
fore engage only part of the processors. This causes an un-
balance in the load. To alleviate this, other distribution
schemes have been developed ‘

The most obvious is cyclic distribution (Fig. 1b). Every
processor is given one element; after all processors have
been given an element, the distribution starts again with the
first processor. This is repeated until all elements have been
distributed. Cyclic distribution makes load imbalance less
likely, but it is likely to induce more communication. Many
array computations only involve the neighbor elements of
the element that is computed. If an array has cyclic distri-
bution this implies that these neighbor elements are stored
on another processor, and therefore they must be commu-
nicated to the computing processor.

As a compromise, HPF not only allows block and cyclic
distribution, but also cychc(m) distribution (Fig. 1c shows

cyclic(2) distribution). In this distribution, every processor
is given m elements per cycle. Note that both block and cy-
clic distribution are special cases of cyclic(m) distribution:
cyclic distribution is the same as cyclic(1) distribution, and

block distribution is the same as cyclic([ni / n, _I) , Where #; is

the size of the array, and 7, is the number of processors.

A further complication is that sometimes we want to
align an array with another array. For example, to ensure
local computation it might be required that every element i
of array X resides on the same processor as element 2 - i + 1
of array Y. HPF allows such an alignment of arrays, pro-
vided that it is of the form a - i + b for arbitrary integers a
and b. Since HPF allows alignment to an array that is itself
aligned, alignment chains of arbitrary length can exist.

1. eyclic (m) distribution is also known as block-cyclic distribution.

However, they can always be collapsed into one ultimate
alignment function. As a convenience to the user, HPF also
allows alignment to a template: a fictitious array that only
serves as a target of alignment.

Since alignment chains can be collapsed, and distribu-
tions can be copied, we assume in this paper, without loss
of generality, that every array is aligned to a private tem-
plate, and that that template is distributed according to one
of the previously described distribution functions. For con-
venience of derivation, we also assume that all array di-
mensions start at element 0.

It is useful to visualize the effects of chstrlbutlon and
alignment, see Fig. 2. The dots represent template elements.
Black dots are connected to array elements through an
alignment function, white dots are not connected to an ar-
ray element.

o

B
»

(ONG)
C®
8 O
O O |
oe
@ O
O O
(ON®)

processor 3

® 00 @000
O®O0080O0
e O0O® 0080
L HONON NONOR®
ON NONON NON®
ONON NONON N
[JeNOX NojoN)
ONON NORON NONO
ONON NoRoN NO
| NONON NORON
oo} _JoJoX Jexe

ONCNON RORCN NO)
O NONON NORON

[NORON NONON N6,

(ON@)

processor 0

(ONON Ne

processor 1

@ O

processor 2

Fig. 2. An example of an array distribution (after Chatterjee et al. [6]).
An array of 39 elements is aligned to a template through the function
fa) =3 - i+ 7. The template is distributed cyclic(4) over four proces-
sors. The resulting distribution requires eight rows. In terms of the
variables in this paper (see Section 2), n;= 39, Np=4, m=4, a=3,
b=7,and n,=8.

1.2 Overview of the Paper

To support HPF distributed arrays, a number of separate
issues must be addressed. These issues include local set
enumeration and global-to-local array index conversion.
Local set enumeration is needed for the generation of the
local part of a loop iteration and the derivation of commu-
nication sets, global-to-local ‘array index conversion com-
prises the transformation of global array references to local
array references. In this paper, we will consider solutions to
these two issues, and the efficiency of their implementation.
Efficiency of implementation includes space and time con-
siderations, e.g., an implementation must lead to a mini-
mum of execution overhead, but must also remain compact
to reduce complexity (no explosion of code or.variables).
We will show that by using a single transformation rule,
which can be repeatedly applied, parallel code can be ob-
tained in a systematic manner. We caH this transformation
owner test absorption.

In Section 3, the basic problems in deriving efficient
parallel code are described. The basic implementation
schemes are the subject of Section 4. In Section 5, generali-
zations of the results to full HPF are described, and a
number of code-independent optimizations are derived

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS 899

for efficient local execution. Finally, in Section 6, the per-
formance of our implementation is evaluated with respect
to space and time overhead. To visualize the results of the
translation, the translation of two small HPF programs is
shown in an appendix.

2 DEFINITION OF TERMS

In this paper, a number of linear functions are used to de-
scribe alignment and array access. Linear functions are of
the form f(i) =a - i + b, where a and b are integer constants.
The following functions and constants are introduced:

ftx(l) =iy it bix ®
fal(i) =4y i+ bal . (2)
Foli) = g - i + b (€)

where f;, is the index function, f, is the alignment function,
f., is the composite of f; and f,, with a,=4a, - a;, and
bca =g bix + bal~

We define g =gcd(a, m - 1,). If we later use g, it is im-
plicitly assumed that the 2 and b in the expression are
changed accordingly. Hence g, = gcd(a,, m - n,). Similar
assumptions are made for other expressions such as Ar. To
indicate the upper bound of a variable x we use the expres-
sion x™’. This means that for all x, x < x".

Other symbols we use are:

¢ The column number.

g The greatest common divisor.

i The index in the iteration space.

m The m of the cyclicim) distribution specification of
HPF.

n Required local storage for a distributed array.

n. The number of columns. Columns are numbered per
processor.

n; The upper bound of the global iteration or array in-
dex i.

1, The number of processors in the processor array.

1, The number of rows.

p The processor number.

g The sequence number of a valid solution of a
bounded Diophantine equation.

r The row number.

u The index in the local array, as calculated by the
global-to-local function.

3 THE BAsiCc PROBLEMS

To motivate the calculations in the remainder of this paper,
and to be able to discuss related work, it is useful to give an
overview of the strategy we use.

3.1 Trivial Alignment

First, let us assume an array distribution with 2=1 and
b = 0: the identity alignment function. There are two obvi-
ous methods to enumerate the local elements of a proces-
sor: rowwise and columnwise. This is shown in Fig. 3 and
Fig. 4, respectively. Since the implementation of these alter-
natives is very similar, we must look at the size of the inner

loop to choose between them. For rowwise enumeration the
size of the inner loop is m, for columnwise enumeration the
size of the inner loop is (averaged over all processors)
n;/(m-n,). For each of the alternatives there are cases
where the efficiency is extremely low: For rowwise enu-
meration this is the case when m =1, and for columnwise
enumeration this is the case when n; <m - n,. Unfortunately,
these cases correspond to CYCLIC(1) and BLOCK distribu-
tion in HPF, and therefore are both quite likely to occur in
practice. Therefore, we conclude that both rowwise and
columnwise enumeration are useful.

\%\% (ONoNe] IONONONE,

rocessor O rocessor 1 cessor 2 rocessor 3
pro P

Fig. 3. Rowwise enumeration of an array: a=1, b=0, m=4, and
n,=4.
P

i

processor 0 processor 1 processor 2 processor 3

Fig. 4. Columnwise enumeration of an array: a=1, b=0, m=4, and
n,=4.
P

To store the elements of a distributed array, we must
have a local array on each processor. For example, the
local array shown in Fig. 3 and Fig. 4 would require 20
elements. These figures also indicate two possible storage
schemes for local elements. The storage schemes can be
interpreted as rowwise or columnwise storage of a two—
dimensional array.

More generally, we can consider the distribution of a one
dimensional array as a reshape into a three-dimensional
array. The new array is indexed with a processor number,
row number, and column number, which are derived from
the original index.

OOOOOOO/.OO OO/.OO
OO/.OO OO.—@—@;‘
OO/.OO/OOOQ—G—G;.OO/.O
O OO.—G—G‘*/.OO/.OO/.OO
OO/.OO/.OOQ—@—G?

OO0 OO/.OO.—G—G;QOO/QO

{

O (ON©; 0—9—67 O O /. 0|10 ® OO
e JIeNeN NelieN RONOCIONORONE
processor O processor 1 processor 2 processor 3
Fig. 5. Rowwise enumeration of an array: a=3, b=7, m=4, and
n,=4.

P

900 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

3.2 Nontrivial Alignment

For nontrivial alignment functions it is still possible to scan
the array in rowwise order and columnwise order, see
Fig. 5 and Fig. 6. To store the elements we can “compress”
either the rows or the columns of the array, so according to
Fig. 5, an 8 x 2 array can be used, and according to Fig. 6, a
3 X 4 array can be used. Both of these arrays can be stored
in rowwise or columnwise order.

ONONCHCIIORONG) (ON®) OO o0
OO O O O O O
@) O

®) O

O O O o0 (ONO)

O O O O OlO O O0lOO OO
processor 0 processor 1 processor 2 processor 3

Fig. 6. Columnwise enumeration of an array: a=3, b=7, m=4, and
ny,=4.
'0

3.3 Efficiency

When evaluating the efficiency of an implementation, we
should consider how scalable it is. Informally, this means
that an implementation should be efficient for an array
containing 1,000 elements that are distributed over 16 proc-
essors, but also for an array containing 1,000,000 elements
that are distributed over 10,000 processors. Naive imple-
mentation schemes can be highly inefficient. Consider, for
example, the following HPF program:
REAL A(1000000)
1HPF$ PROCESSORS P(10000)
IHPF$DISTRIBUTE CYCLIC(10) ONTO P :: A
INTEGER I

HPF$ INDEPENDENT
FORALL(I = 1:1000000) A(I) =...
With guarded execution this would be implemented as:’
for(i = 1; i <= 1000000; i++) {
if (owner (A[i]l) == me) A[i] =...;

}
where me is a variable that holds the number of the local
processor. Since A is distributed over 10,000 processors, on
each processor only one test in every 10,000 succeeds, caus-
ing a considerable overhead. Scaleable implementation
schemes must have a large fraction of guarded expressions
that are executed, and preferably must eliminate the guards
completely.

More subtle sources of inefficiency are for loops. In
some situations the average size of a loop is small, possibly
less than one. In that case the loop is in effect reduced to an
if statement. In general, we want for loops to span ranges
that are as large as possible, especially in inner loops, to
reduce loop overhead.

To support HPF distributed arrays the following aspects
are important:

2. Throughout this paper we use the programming language C to de-
scribe generated code or sketches thereof.

e Enumeration of Local Elements. Given an independent
FORALL statement, and given that the owner com-
putes rule is used, how are the local elements of an
array enumerated? Note that the FORALL of HPF has
parallel assignment semantics. This means that we
can execute the iterations of the FORALL loop in ar-
bitrary order. This allows considerable freedom in the
implementation.

As we will show in this paper, guarded execution
can be replaced with two different implementations
where only local indices are enumerated, provided
that the Ihs array is accessed through an affine func-
tion. If the access is not affine, a different method may
be more suitable, for example using a special commu-
nication library such as PARTI [4], [5]. For the affine
case, however, we can always enumerate the local
elements explicitly. Therefore we can evaluate the
enumeration methods on their overhead.

e Representation of Distributed Arrays. How do we store
the elements of a distributed array on each processor?
If an array is distributed, each processor must allocate
some space for it, called the local array. We must find a
way to calculate the required size of the local array,
and we must also find a function to map an index
value in the global array onto an index value in the
local array. This function is called the global-to-local
function.

For the representation of distributed arrays, both the
storage overhead and the execution overhead are impor-
tant. The execution overhead is caused by the fact that
every reference to a global array element must be
translated to a reference to a local array element. Since
this translation can be costly, some implementation
schemes (including ours) allow some local holes
(unused elements) to simplify the translation. This
introduces storage overhead. Hence it is important to
find an implementation scheme that minimizes both
the required storage and the time required for global
to local index translation.

Another problem with distributed arrays is that the
results of communication must be stored. A number of
special storage schemes have been proposed for this,
but they usually require different expressions to access
local and communicated foreign elements. Instead of
these storage schemes we introduce temporary arrays
wherein both local and foreign elements are copied.
These temporary arrays are accessed in the usual way.

o Communication. How do we efficiently construct the
messages that must be exchanged to implement an ar-
ray assignment or must precede a computation?

For communication, the efficiency of many systems
is largely determined by the number of messages that
is generated. The implementations we discuss in this
paper all generate at most one message to each of the
other processors for each array that is accessed, so we
do not have to compare the implementations explic-
itly on this aspect. Instead, the implementations are
compared on the processor overhead of constructing
the messages.

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS 901

3.4 Related Work

The automatic generation of message passing programs
from data distribution specifications has been explored
for some time in the context of various data parallel lan-
guages [7], [8], [9], [10], [11], [12]. The recent definition of
HPF [1] has added some new data alignment and data
distribution features for which no efficient solutions ex-
isted. As a consequence, new results have been reported
in [13], [6], [14], [15], [16], (17, [18], [19], [20], [21] and,
more recently and concurrently with this paper, [22], [23],
[20], [24], [25], [26].

Early optimization techniques only consider nonaligned
arrays. The first optimizations were reported by Callahan
and Kennedy [7] and Gerndt [8]. They considered non-
aligned block(m) distributions with linear array access func-
tions. Gerndt also showed how overlap can be handled. In
Paalvast et al. [10] a solution for monotone array access func-
tions and block(m) distributions was given. Solutions for cy-
clic(1) and linear array access functions have been independ-
ently reported by Koelbel and Mehrotra [11] and Koelbel [27]
for the language Kali, and Paalvast et al. [10] for the language
Booster [28], [29].

For cyclic(m) distributions a rowwise and columnwise
solution has been given in Paalvast et al. [30], [29]. The
rowwise solution allows array access functions to be
monotone and the columnwise solution requires the array
access function to be linear. These solutions provided a ba-
sis for the results in this paper.

More recent publications also take alignment into ac-
count. Most results assume that dimensions are independ-
ent of each other and/or have restrictions on the class of
alignment functions allowed. Tseng [13] considers block(m)
and cyclic(1) distributions with an alignment coefficient
of one. Two related approaches have been presented by
Stichnoth et al. [14], [15] and Gupta et al. [17]. Essential in
these approaches is the notion of virtual processors for
solving the cyclic(m) case. Each block(m) or cyclic(1) solution
for a regular section of an array is assigned to a virtual
‘processor, yielding a so called virtual-block or virtual-cyclic
view, respectively. Stichnoth et al. [14], [15] use a virtual-
cyclic view and use the intersection of array slices for com-
munication generation. Gupta et al. [17] present closed
form solutions for nonaligned arrays for both the virtual-
block and the virtual-cyclic view. This method is extended
to aligned arrays in Kaushik et al. [24]. To reduce calcula-
tion overhead in the virtual processor approach, Kaushik et
al. [18] propose a method to reuse these calculations for
classes of related access functions.

Chatterjee et al. describe a nonlinear method to enumer-
ate local elements [6]. They observed that the sequence of
positions of elements in the rows of a template shows a
pattern that repeats itself after a number of rows. Let us call
such a range of rows the pattern cycle of a distribution, and
let us call this enumeration method pattern-cyclic enumera-
tion. For instance, the elements {1, 2, 3, 4} in Fig. 2 form such
a pattern. Chatterjee et al.’s contribution is the construction
of an algorithm to find this pattern and place the elements
of this pattern in an in-order sequence. From this sequence,
a finite state machine (FSM) is constructed which is used to
successively access each element.

In the original paper of Chatterjee et al., the construc-
tion of the FSM requires a full sorting operation. Recent
papers describe more efficient methods [21], [22], [23],
[26]. In [21], a linear algorithm for constructing the FSM
for two special cases is given. Linear algorithms for the
general case are given in [22], [23], [26]. Kennedy et al.
also showed [26] that their method can be used without a
table, using a demand driven evaluation scheme, at the
expense of some performance.

As will be: shown in this paper, rowwise and col-
umnwise decomposition tend to be complementary: One is
inefficient where the other is efficient and vice versa. The
efficiency of pattern cycle enumeration is related to row-
wise enumeration. In effect, pattern cycle enumeration al-
lows one or more rows to be enumerated in the inner loop.
How many rows are enumerated is strongly dependent on
the alignment and index access function applied. This de-
pendency can only be relaxed by enumerating more than
one pattern cycle at once, at the expense of applying a two-
level table scheme as shown in [26] or at the expense of
larger tables (by unrolling the table).

A different approach to local set enumeration for dis-
tributed array access and communication is the use of linear
algebra techniques. This approach is followed by Ancourt
et al. [20] and Le Fur et al. [12]. Le Fur et al. give solutions
for commutative loop nests on block distributed and non-
aligned arrays. Ancourt et al. present a solution for the gen-
eral case. Linear algebra techniques can be quite costly
when not all parameter values are known at compile-time.
This might be a problem in HPF programs. For example,
the number of processors is often only known at run-time. -
To avoid this, Ancourt et al. [20] also present a symbolic
solution for columnwise local index enumeration.

As already explained, the storage and access of distrib-
uted arrays is another problem that needs attention. Chat-
terjee et al. [6] use a local storage compression scheme in
which the array elements are stored in lexicographic order
without holes. Because the FSM for enumerating elements
directly enumerates local elements, explicit global-to-local
calculations are not necessary. In Kaushik et al. [24], similar
dense storage compression schemes are employed. Each
scheme is specific for an enumeration method. Changing
the enumeration method for an array object leads to a real-
location of the array. Also, no global-to-local formula is
given, resulting in table generation time overhead for
translating the global index sets to the local index sets.
Stichnoth et al. [15] use a block compression method with
the cycle number as second index. Ancourt et al. [20] derive
a formula for a columnwise compression method. Their
global-to-local function remains rather complicated, al-
though they do remark that in many cases more efficient
solutions can be obtained.

Mahéo and Pazat [31] use another approach to simplify
access to local arrays. Their method is based on page driven
array management. The main advantage of their approach
is that they can provide a very efficient global-to-local
function. This comes at the expense of storage overhead
and page management.

902 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

4 ENUMERATION, STORAGE, AND
COMMUNICATION SCHEMES

For the realization of the enumeration strategies described in
the previous section, we must calculate the parameters that
are associated with them. There is a relation between the
global index i and the processor number p, row number 7,
and column number c. This relation is given by (see Fig. 7):

a-itb=n,-m-r+m-p+c 4)

We will call this equation the position equation. Given an i,
we can derive r, ¢, and p as follows:

B a-i+b
"= n,-m ®)
c:(a-i-f—b)modm (6)
a-i+b
p=[p Jmodnp 7

The expression for p in (7) is often called the owner function,
and is also written in this paper as

owner(i) = [@J mod 7,

We also know that
0<i<m
0<p<mn,
0<r<mn,
0<c<mn, 8

Since 1, = m, we will use m in the remainder of the paper.

lOOOOOO0.00000.00
Nl _NORON JIONeN NelloN NeRell NeNeN |
ONON NelloN NoNell NoNON JeNeR Ne
Ol NoNell NONON lioNoN NeolioX NoNe
L NONON loNoN NeolleN NeXNell NeNoN
ONOR NeliloN NeNell NoNoN JioNeoN Ne!
ON NoNeoll RONON JIeNeN NelIeN NeN6)
L JONON JIcHoN NelieN NoNeollcNoNoNe)
p=0 p=1 p=2 p=3

Fig. 7. The definition of the local position variables: ¢ is the column
number, p is the processor number, and ris the row number.

The variable 7, is the maximal row number; it can be
derived from the distribution parameters. By substituting
i=n;—1 in (5), the maximal row number can be expressed

as:
S _ Ll-(ni _l) +b
n,-m
In a similar way the minimal row number can be calculated

by substituting i = 0 in (5), resulting in 7™ = [b / (np m)J

Since a multiple of 7, - m can be added to b without affect-
ing the distribution of the elements over the processors
(only the row numbers are changed), we assume without

loss of generality that 0 < b < 1, - m, so that s always
zero. Hence, the number of rows n, is given by:

. a-(n,—=1)+b
n,:1+r’””"—rm”"=1+{———(’) J
n, -m

4

For rowwise enumeration we have to find, given a proc-
essor number p and a row numbeér 7, which column num-
bers meet (4). For columnwise enumeration we have to
find, given a processor number p and a column number ¢,
which row numbers meet (4). In this section, it will be
shown that the row numbers or column numbers that meet
these conditions are easily found by solving a linear Dio-
phantine equation. Since linear Diophantine equations are
essential to our solution, we will first give a brief overview
of the relevant theory and associated formulas needed in
the remainder of this paper. More details can be found in
books on number theory, for example [32].

4.1 Mathematical Preliminaries
Given ¢, B e Z, Euclid’s extended algorithm calculates the
greatest common divisor (gcd) of acand B. That is, it finds the
maximal ¢ € Z, such that o/g € Zand B/g € Z. As a side
effect, it also finds x, y € Z such that’
g=x o~y

Euclid’s extended algorithm can also be used to find the

solutions of a linear Diophantine equation. Given

o fBveZ
we want to find all x, y € Z that satisfy the equation:
a-x=f-y+v ©)

Let g =gcd(e, P). If g does not divide v there are no solu-
tions. If g divides v there are infinitely many solutions, de-

scribed by
X — xo ij . 1
(yj [}/oj‘? (Ay / (10
for arbitrary j € Z, where
q=Vvg (11)
§=x 0~y P (12
Ax = filg (13)
Ay = ofg (14)

The values of xo 1o Ax, Ay, and g can be found with
Euclid’s extended algorithm. We write this as the following
function:

euclid(cy, B) = (xo, Yo, 8, Ax, Ay) (15)

Note that (—x,, -y, g -Ax, -Ay) is also a valid result; we
assume a solution is chosen where Ay > 0. This simplifies

3. Actually, literature usually states that x, y € Z, g=x - o+ y - B are
found. This is a trivial substitution of variables; the form we use is more
convenient for the derivations in this paper.

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS 903

the derivations. Now let us suppose that the variables are
bounded by

0<sx <2
0sy<y” (16)
By using (10), we know that
0<xp q+Ax-j<x
0<yo-q+ay-j<y"” (17)

Since all other variables are known, we can use these
bounds to calculate the range of j that leads to solutions
within the given bounds. We have ensured that Ay > 0, so
the bound on j caused by y is easily simplified to:

r [, ub
Yo d|_. |Y Y4
If Ax > 0 the bound on j caused by x can be simplified to:
r [ub]
X dl_. |X ~%4
A] <j< % 19)
else it becomes:
[ub
X —xpq| o _[od]

The valid range of j is the intersection of (18) and (19) or of
(18) and (20).

Now let us consider Diophantine equations with more
variables. Given ¢,), --- B, Ve Z we want to find all x, y,,
<+, Yy € Z that satisfy the equation:

Oc-x=ﬁo-y0+-~+ﬂk-yk+v (21)

If we focus on the variables x and y,, we see that there can
only be a solution if the remainder of the equation is a mul-
tiple of gy = ged(a;,). Therefore we have:

o-x=Po-Yo+ 8o o
Qo Go=Bi it + BtV (22)
We have decomposed the original Diophantine equation

into two smaller Diophantine equations. When we repeat
" this process, we end up with the following equations:

) = e = (&)
vo) = \w, fl Ay, Jlo
(‘70) - o, q (Aqo) i
Y vy,) Ay,)1
-1 — qk_lo + (Aqk—l) H
(Yk) (Y%, qu Ay, Ji
B = v/& (23)
where
euclid(e,) — (o, Yoor Sor A%, AYg)
EMClid(g(), ﬁl) - (qOO/]/10/ 31; A%/ Ayl)
euclid(gk_l, ﬁk) 4 (xk(y Yo Sk Axkr Ayk) @4

Now let us assume that we have bounds on the variables x
and y;:
0<x <2
0<y<y” ©5)
Because there is a linear relation between j; and y;, all y; can
be generated by enumerating a range of j;. The bounds on y;
give bounds for j; (remember that Ay; > 0):

Vi i | . l‘/?b‘yiu'qi
Ay; =1 Ay;

Moreover, the bound on x gives another bound on j;, so
that j, is bounded by two different bounds: one caused by
1o and one caused by x. If Ax > 0 then:

(26)

r ub
—Xo 90 . X _xo'%—‘
Axo] ES]0 < ‘7 Axo (27)
else
[_ub 7
Xo X %o . ~Xp %
_Ax_o___“ <j < [Ax, (28)

If we want to generate all solutions that satisfy the
bounds, we can do this by enumerating all tuples (jo, -- jz)
that satisfy the bounds. For j; the intersection of both sets of
bounds must be used.

The variables j; have a lower bound that is in general not
equal to 0. If we want to have variables that have a lower
bound of 0 (for example because we want to use them as
array indices, see Section4.3), we can easily introduce
“shifted” variables:

. =Y, 4
W= [LAH o)
In that case, the bound becomes
ub
Yi Y, % —Yi, 9
0y < [Ay, 1—!7 Ay, -I (30)
Since for arbitrary a and b it holds
[al-1<[a-bl-Tpl< [al
this can be approximated by:
b
0<u < y—lu— (31)
S| Ay,

This approximation may introduce values of #; that are not
associated with a valid value of j;, but there are circum-
stances where this is acceptable; for example when the
bounds are used to calculate the required local storage
space of an array.

In local address calculations it is necessary to calculate
from y;. From (23) it follows that

Yi=Yio G+t AYiJy
or:
Ji= W= Vi 40 / A Y
Substituting this in (29) and using - —a / b]=|a / b] yields:

904 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

| Y
i = {ZEJ (32)

Using (31) and (32), we get the very useful relation:

ub
Yi Yi
OS{A—%H@:}

4.2 The Decomposition of the Position Equation

The theory in the previous section can be used to decom-
pose the position equation (4). In principle there are 4! = 24
possible ways to associate the variables in (4) with x and y;
of the previous section. By association we mean that the
terms of (4) are rearranged to match the appropriate terms
in (21). Not all possible associations are useful, however. We
want the processor loop to be the outer loop, so that it can be
removed for the parallel version of the code. Hence this must
be the rightmost term in the position equation. Also, since we
want to calculate i, this term must be put at the lhs of the
equation. This leaves two possible decompositions:

(33)

o Rowwise. In this case we relate the equation

a-i=c+n

prmer+mep=b

to (21).
¢ Columnwise. In this case we relate the equation
a-i=n, m-r+c+m-p-b
to (21).

4.2.1 Rowwise Decomposition
If we apply the decomposition on

a-i=ctn, m-r+m-p-b

we get:

A .

o R S
N

1l It
N TN

B
)
1l
|
jw oyl

(34)

where
euclid(a, 1) —=(0,-1,1,1,a)
euclid(1, n, m)—(1,0,1, n,m, 1)
euclid(1, m) - (1,0,1,m, 1)

Note that the results of all of the Euclid calculations are

known, so no Euclid calculations are necessary at run time
or compile time. Using the bounds of (8) we get:

(35)

0< j2=p<np
0< ji=r<mn,
0L—n, - m-j—m-jp+tb+a- jp=c<m
0= Jo=i<mn (36)

The bounds (36i) and (36¢c) together determine the valid
range of j,. For all » < 1, — 1 the bounds (36i) will be wider
than the bound (36¢), but for r =7, — 1 the bound (36¢) will
be wider than (361).

4.2.2 Columnwise Decomposition
If we apply the decomposition on -

a-i=n,-m-r+c+m-p->b
we get:
i i
() = () = (B
7 0 1.
[Coj - (—1) Mo (g)h
[1;]) = (6] fy (7717)]2
7y = -} (37)
where
euclid(a, n_p -m) — (iy, v, §, N, Ar)
euclid(g, 1) - 0,-1,1,1, 9
euclid1,m) = (1,0,1,m, 1) (38)

Note that two of the Euclid calculations are known, so at
most a single Buclid calculation is needed at run time or
compile time. Using the bounds of (8) we get:

0< J=p<mn,
0<b-m-j,+g-j1=c<m
0 Qg fi+A-jy=i<wy
0L 71y ji+Arjo=r<n, (39)

The bounds (391) and (39r) both determine the range of
valid j,. However, since n, is derived from #,, the upper
bound of (39r) will always be wider than the upper bound
of (391).

4.3 The Global-to-Local Function

The global-to-local function must map an index in the dis-
tributed array, called the global index, onto an index in the
local array. We have considerable freedom in defining this
function; as long as every different (r, c) pair that occurs is
mapped on a different local address, the function is correct
(in other words, the function is bijective).

The decompositions derived in Section 4.2 can be used to
implement storage schemes for the local elements of a dis-
tributed array. We will derive such a storage scheme for
both rowwise storage and columnwise storage. In both
schemes, we allow some holes to occur in the locally allo-
cated space of the array. That is, some local memory ele-
ments may not be associated with an array element. For
both derivations the percentage of holes may become very
high. Fortunately, columnwise storage tends to be efficient
when rowwise storage is inefficient, and vice versa, as will
be shown in Section 6.

In the storage schemes below we assume that 2 =4,
b="b, and a > 0. If an array has a4 < 0, we can always re-
verse the order in which the elements are stored by the
substitutions:

a—-a
b= +m-1)-a
In Section 5.7, we will show how to eliminate global-to-

local calculations from local set enumerations. To be com-
patible with these eliminations, it is necessary to use the same

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS 905

row and column numbers in rowwise and columnwise stor-
age. Therefore, only the bounds on r and ¢ are used. Without
this requirement, columnwise storage could use the bounds
on i, resulting in some cases in (slightly) less memory occu-
pation. Considering the advantages of global-to-local elimi-
nation, we consider the larger memory usage acceptable.

4.3.1 Rowwise Storage
Using the bounds (36r) and (36¢), and using (33), we get:
(r) 0<r<m,

oo
(40)

Therefore, all local elements of the distributed array can be

stored in
m
S

elements, and we can introduce the global-to-local function®

m C
gZI;ow(rr cy=r- ‘771 + 1\EJ

Using (5) and (6), we get the global-to-local function:
‘i+b “i+b)mod
g21mw(i)=r-v i J‘[ﬂ]“{(u i +b)mo mJ 3)
n,m || a a

4.3.2 Columnwise Storage
Using the bounds (36r) and (36c), and using (33), we get:

(r) 0< H;J < [%}

@ o<[5<[%]
8l 18 (44)

The bounds of (44) indicate that all local elements of the
distributed array can be stored in

41)

(42)

ml|n
elements, and we can use the global-to-local function®
27 (r,¢) ! e + c 46)
7,0)=|——1||— — X
g col Ar g g

Using (5), (6) and (46), the global-to-local function becomes:

. a-i+b m (a-i+b)modm
82y (i) = wom || o e a— @7

This substitution uses the property that

4. As explained-before; the distribution of a one-dimensional array can
be seen as a restructuring into a three-dimensional array that is indexed by
a processor, 1ow, and column number. In this view, each processor owns a
two—dimensional slice of this three-dimensional array. To map the ele-
ments of such a two—dimensional array onto storage locations, it must be
“flattened” to a one—dimensional array. Here, one of two obvious ways to do
this is used. If we used the other one, we would get: g2I',_, (7, ¢} =Lc/ al'n +r.

5. See the footnote of (42).

if and only if ¢ > 0.

4.3.3 Storage for Block and Cyclic Distribution

Block distribution can be considered a special case of
block—cyclic distribution, where we know that r =0, and
n, = 1. Since there is only one row, rowwise storage is the
most attractive. We can easily derive a global-to-local func-
tion by substituting the known constants and (6) in (42).
This yields:

a-i +b)modm
- a 48)

820y, () = [(

If it is known on which processor p the element is located,
this can be calculated more efficiently as:

(ﬂ'i+b)—m-pJ

82100 (0) = { P (49)

In a similar way, we can consider cyclic distribution a
special case of block—cyclic distribution with ¢=0, and
m = 1. Since there is only one column, columnwise storage
is the most attractive. We can easily derive a global-to-local
function by substituting the known constants and (5) in
(46). This yields:

. a-i+b
gzzcyclic(l) = m-n. -Ar (50)
14

4.3.4 Hybrid Storage

Both rowwise storage and columnwise storage may be
highly inefficient for some distributions (see Section 6).
However, (43) and (47) only differ in constants. Therefore, it
is possible to support both by choosing one of the two sets
of constants, depending on the required size for each of the
storage strategies. This choice needs only be made at the
moment the array is created.

Since rowwise storage tends to be efficient (have few or no
holes) where columnwise storage is inefficient and vice versa,
the hybrid storage scheme will be efficient in most cases.

4.4 Local Set Enumeration

Let us now examine how to enumerate the local execution
set of a FORALL. Since the owner-computes rule is used,
this is equivalent with enumerating a subset of the local
index set of a distributed array. For the moment we restrict
ourselves to the following;:

¢ The iteration starts at 0, and progresses with step 1.

e The FORALL contains only a single assignment
statement.

e The FORALL statement is annotated as INDEPEND-
ENT.

o The access function for the array at the lhs is affine.

Later (in Section 5) this will be generalized. For the moment
we assume that the rhs array elements are available some-

906 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

how. Since the owner computes rule is used, the lhs array
elements are locally available. Considering these restric-
tions, the loop will be of the form: ‘
IHPFS$ independent
forall(i=0:ni-1:1)
a(d*i+e) =...
end forall
where d = a;, and e = by, are the coefficients of the linear
function f;,. To use this function in the position equation, it
must be composed with the alighment function of array a,
resulting in the composite index function f,,. We can then
substitute the composite index function in (4), resulting in:

g T+ bog =T M Ty + 1P + C G1Y)

Using the decompositions of the position equation shown
in the previous section, the problem can be reduced to

1) enumerating all valid (jy, 3, j») tuples of (34) or (37),

2) enforcing the owner computes rule, and

3) calculating i for each tuple value.

For Step 1, the bounds of (36) suggest a possible method

to enumerate the valid tuple values: enumerate all valid j,

as specified by (36p); for each value of j, enumerate all
valid j; as specified by (36r); and for each valid pair of (j, j,)
enumerate all valid j; as specified by (36¢c) and (36i). The
bounds of (39) can be used in a similar way. We call these
enumeration methods rowwise enumeration and columnwise
enumeration, respectively. For Step 2, it is sufficient to let
each processor handle the value of j, = p that corresponds
with its own processor humber. Finally, for Step 3, we can
use the relation between i and j, and j; as derived in the
decompositions (34) and (37). For rowwise decomposition
the relation is i = jy, and for columnwise decomposition the
relationis i =iy - j; + Ai - .

Block distribution can be considered a special case of
block—cyclic distribution, where we know there is only one
row. Cyclic distribution can be considered as a special case
‘of block—cyclic distribution, where we know there is only
one column. For both distributions only one loop is neces-
sary to enumerate the local elements.

4.5 Communication
To begin with, we discuss the problem of implementing

IHPF$ INDEPENDENT
FORALL (I=0:N-1) A(I) = B(I)

for arbitrarily aligned and distributed arrays A and B. Gen-
eralization to more general cases will be discussed below.
Specifically, we must find a way to send all elements of B to
the processors that own the corresponding element of A.
The implementation must work and be reasonably efficient
for any pair of distributions. In practice this means that a
processor must aggregate elements as much as possible
before sending them to a destination processor.

Broadly speaking, there are two possible methods to do
this. For the sake of clarity, we explicitly show the required
owner tests, and do not absorb them in the iterations. Also,
we only show message construction (“packing”); message
unpacking first checks if any message is to be received from
a processor and if so unpacks the message in a similar way
it has been packed.

1) Messages can be constructed for all targets separately:
for (p=0; p<n_p; p++){
gsendlist[p]l = <empty>;
for(i=0; i<n_i; i++)
if (owner(B[i]) == me &&
owner (A[i]) == p)
/* both conditions will be
absorbed */
append (sendlist([pl, B[il);
if(size(sendlistp])!=0)
gend(p, sendlist[pl):;
}

This corresponds to a post office where the heap of
letters is first searched for all letters for Amsterdam,
then for all letters for Rotterdam, and so on.

It is assumed that the send() function does not
block, so that message construction can be overlapped
with message transmission.

2) We can construct messages to all targets simultane-
ously:

for(p=0; p<n_p; D++)

gendlist[p] = <empty>;

for(i=0; i<n_i; i++)

if (owner(B[i]) == me)
/* condition is absorbed */
append (sendlist [owner (A[1)],B [1);

for(p=0; p<np; p++)
send(p, sendlist([pl);

This corresponds to a post office where all letters are
one by one tossed in bins labeled Amsterdam, Rotter-
dam, and so on. This is essentially the method as pro-
posed in [6].

The advantages of the first method are that, although the
size of each sendlist is not known, we can determine an
upper bound to the sum of the sendlist sizes. Therefore, it
suffices to simply allocate one send buffer of that size, and
construct the individual send buffers in that buffer. In the
general case duplicate elements of B may have to be sent, so
a send buffer must be allocated that can contain the entire
iteration space of the FORALL. Fortunately, we can in
many cases use a significantly better estimate: if it is known
that the index function of B is affine, and hence that every
element of B needs to be sent only once, the send buffer size
can be limited to the size of the local iteration space. Also,
message construction and transmission can be overlapped:
Once the first message has been constructed, it can be han-
dled in parallel by the communications hardware.

The disadvantage of the first method is that in the gen-
eral case a message is constructed for all other processors.
Although in many combinations of distributions most mes-
sages will be empty, the message construction is still per-
formed, and is likely to cause considerable overhead. This
is especially significant for large processor sets. If more is
known about the distribution this disadvantage can be ob-
viated by enumerating a smaller set of processors.

The advantage of the second method is that messages are
only constructed for the processors that will receive a message.

The disadvantages are that for each local index of B the

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS 907

function owner (A[i]) must be evaluated. In general this
requires time consuming calculations for each element.
Also, message packing and communication cannot be
overlapped. Finally, in the second method we cannot easily
estimate the size of the required buffers beforehand. There
are a number of methods to circumvent this problem:

1) Do not estimate beforehand, but let the sendlist grow
dynamically. This is simple to understand and im-
plement, but it requires a good dynamic memory
manager. This may cause problems on some systems.

2) Count the elements beforehand. This can be done us-
ing the same set enumeration method as used for
send .buffer packing. This implies that the iteration
space must be enumerated twice.

3) Use a fixed upper bound, and send multiple messages
if necessary. This an effective way to solve the prob-
lem of buffer size estimation, but message aggrega-
tion is not optimal.

Unfortunately, all of these methods to avoid pessimistic
buffer size estimates have significant disadvantages.

5 GENERALIZATION AND OPTIMIZATION

In Section 4.4 and Section 4.5, we have shown methods to im-
plement simple FORALL statements. We can generalize this in
a number of steps with multistatement FORALLSs, nonlinear
access, multidimensional arrays, general FORALLs, and DO
loops. The generalizations we show here merely provide an
outline; describing all facets and possible optimizations would
be prohibitive in the context of this paper.

5.1 FORALLSs with Arbitrary Iteration Ranges

Any FORALL with an arbitrary iteration range can be
transformed to a FORALL with a “normalized” iteration
range. Thus,

{HPF$ INDEPENDENT

FORALL(I = L : U : 8) A(£(I)) =...

can be transformed to:
1HPF$ INDEPENDENT
FORALL(I = 0:(U - L + S)/8)
A(E(8 * I + L)) =...
END FORALL

5.2 Multistatement FORALLs

According to the HPF standard, multistatement FORALLSs
are equivalent to multiple single-statement FORALLs.
Hence,

IHPF$ INDEPENDENT
FORALL(I=1:N)
A(I) = A(I)+1
B(I) = A(I)
END FORALL

is equivalent to

{HPF$ INDEPENDENT

FORALL (I=1:N) A(I) = A(I)+1
{HPF$ INDEPENDENT

FORALL (I=1:N) B(I) = A(I)

5.3 Nonlinear Access Functions

Nested array references on the rhs can be removed by in-
troducing a temporary that is totally replicated (stored
completely on all processors). For example, the expression
A(B(I)) can be simplified by introducing a totally replicated
temporary T. We must first assign the contents of B to T

T=B

(which is another communication statement). After this we
can use the expression A(T(I)). Alternatively, one may

want to use a inspector/executor run-time library such as
PARTI [4], [5] for this.

5.4 Multidimensional Arrays

The techniques shown for one dimensional arrays can be
applied to multidimensional arrays. This not only applies to
cases where each array subscript expression is independent
of the other, such as

!|HPF$ INDEPENDENT
FORALL (I=0:N,J=0:M) A(I,J) = 0

but also to more complicated index expressions. For exam-
ple, statements such as

'HPF$ INDEPENDENT
FORALL (I=0:N)
FORALL (J=0:M-I) A(I,I+J) = 0
END FORALL

can be handled (both iteration ranges can be reduced), because
the loop over J is nested within the loop over I, and therefore
I + Jislinear in J. On the other hand, in the statement

!HPF§ INDEPENDENT
FORALL (J=0:M)
FORALL(I=0:N-J) A(I,I+J) = 0
END FORALL

only the iteration range of I can be reduced, the owner test
of iterator J remains.

Since replicated and collapsed array dimensions do not
require an owner test, we do not have to optimize on these
dimensions.

5.5 General FORALLSs

Until now, we have assumed that the FORALLs are of the
form

{HPF$ INDEPENDENT
FORALL (I=0:N) A(da*i+ea)s B{(db*i+eb)

where A and B are different arrays, or of the form

|HPF$ INDEPENDENT

FORALL (I=0:N) A(d*i+e) = <expr>

where <expr> is an arbitrary expression containing only
references to locally available array elements. We will now
show that any FORALL can be transformed to a sequence
of FORALLS that are of this restricted form.

Without the INDEPENDENT directive, all iterations
of a FORALL require the value of the rhs expressions as
they are at the start of the loop. Fortunately, we can al-
ways transform a FORALL to an independent FORALL
by introducing temporary variables. For example, the
statement

908 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

FORALL (I=1:N) A(I)=A(I-1)

is not independent, since the elements of A change during
the execution of the FORALL. However, we can easily
transform this to independent FORALL loops by introduc-
ing a temporary T:

{HPF$ INDEPENDENT
FORALL (I=0:N-1) T(I)=A(I)
IHPF$ INDEPENDENT

FORALL (I=1:N) A(I)=T(I-1)

Any array assignment or independent FORALL without
nested array references can be rewritten to a series of com-
munication statements and local computations. For exam-

ple, the array assignment:
A =B+ C

can be rewritten to

B_tmp = B
c_tmp = C
A = B_tmp 4+ C_tmp

If we give B_tmp and ¢_tmp the same distribution as a,
the first two statements are communication statements, and
the last statements is a local computation.

At first sight it may seem excessive to introduce this
much data copying. However, to implement a FORALL
correctly it will sometimes be necessary to copy the data
anyway. Nevertheless, a good compiler will try to eliminate
these copy operations whenever possible with a number of
optimizations such as local copy elimination, deviations
from the owner computes rule, and transformations such as
A=B + C = A =B; A += C. Detailed discussion of
- these transformations is beyond the scope of this paper,
however.

5.6 DO Loops

DO loops are not easy to parallelize, because we must as-
sume that the iterations must be executed in the given or-
der. Potentially this requires the update of the involved
variables after each iteration, making all parallelization im-
possible. In cases where DO loops can be executed in par-

" allel, HPF allows an annotation to indicate this (the DO
INDEPENDENT clause). In some circumstances it is also
possible to detect this automatically [33], [34]. With these
premises in mind, the method described in this paper can
also handle independent DO loops.

5.7 Eliminating Global-to-Local Calcuiations

The global-to-local functions of (43) and (47) are relatively
computation intensive, since in the general case they con-
tain mod and div operations. However, for FORALL state-
ments with linear access functions, the global-to-local cal-
culations can be reduced to linear expressions in the inner
loop. This property holds for any combination of the local
executfion set enumeration and local storage schemes in this
paper.

To prove this, we write the global to local functions (43)
and (47) as

826D =Ty C1 + T

92l (D =T, Co+ Ty

where
fa(0)
P
|t
27| Aryomem,
) m
T, = fa,(z)moda—l
T, =| f,() mod—
= mod —
4 _ﬂll gal
['m
Cl = E‘;
and
"m
C] = g—al

T; and T, can be interpreted as row numbers, while T, and
T, can be interpreted as column numbers.

We first treat rowwise enumeration in combination with
rowwise storage or columnwise storage.

5.7.1 Rowwise Enumeration and Row or Column
Storage

Looking at (36¢) we see that for the enumeration of j, holds:
M-k <Ay o +beo <m- (k+1)
for k e Z. This implies that for f,(jo) = 4 jo + by it holds
that f,,(jo) div m = k. We can rewrite the range of variable
jO € [jﬂ,mml jO,mlzx>
to
Jomin+
where
“uel0, jo,max_ jo,min>

Using the property that (x + Ax) mod m =x mod m + Ax,
if (x + Ax) div m = k and x div m =k, it follows that T, can be
written as

T — fco(jo,min) mod m + Qoo U
3 aal
L
or:
fco (jo,min) mod m
Ty=|——— | +a, U
. al

For columnwise storage the reasoning is completely analo-
gous for T, yielding a multiplier of a,,/g,; instead of a;, as
in the case of rowwise storage.

From |f,,(j)/m]=k, it also follows that both terms T,
and T, are constant for any value of j, within that row.
Hence, we may take jy,;, to calculate the terms. Hence, it
follows for rowwise enumeration and rowwise storage that

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS

321532(& (]0)) = gzzmw(fix(jo,min)) + L

and for rowwise enumeration and columnwise storage:

2 () = 820 o)+ 52

1Y means rowwise enumeration combined with

srow

where g2

lenrw

o] IN€ans rowwise enumeration

rowwise storage and g2
and columnwise storage.

Hence, only for the starting point of the inner loop of a
local enumeration sequence, a more complicated global-to-
local function needs to be calculated. Then the remainder of

that sequence can be enumerated in a linear fashion.

5.7.2 Columnwise Enumeration

and Row or Column Storage
For columnwise enumeration and columnwise storage, we
rewrite the global index generation function i, - j; + Al fo
from (39i) as

iO 'jl + Aico‘ jO = iO ’ j1+ Aico . (jo,min +u) = A’"Aico ‘u
where A = iy j; + Ay jomin denotes the starting point of the

enumeration sequence. T, = Lfa,(i)/Arﬂ,A m- an can be re-
written as T, = qul(i) /Ary 4, Substituting A + Ai, - u in T,

yields
fco(//{’ + Aico i u) _ fco()’) Aica
aal . Aiul a uul ’ Aiz,zl " ﬂix . Aial ‘

because the term a,,- (Ai,/Ai,) always yields an integer.

From (14) and (37) it follows that Ai,, = m - n,/g,,. Hence
feolA + Ay - u) = f (D) +ag, (m - n,/8,) - u. Because the term
fe (m - n,/g.,) is always a multiple of m, the term T, will
always yield a constant (as will T3 in the other case). As a
result, the global-to-local function can be written as

. . . \ AiCD
821550 (i 1o + Ay o)) = 82L(f(A) + 3, 'A—iul"cz u

The derivation of columnwise enumeration with rowwise
storage is analogous, yielding

u

ecol P . , Al
g215ra1lv(fix(10 h + Azco]0)) = gzzrow(fzx()“)) + Ao m .C,Z 'Cl U
P

Hence both global-to-local functions are linear in u.

5.8 Other Optimizations

As remarked above, only the starting points of each row or
column enumeration sequence require a full global-to-local
function calculation. For long inner loops, this will result in
little overhead, as will be shown in Section 6. For short in-
ner loops which are to be executed more than once, it might
be profitable to store the starting points in a table to reduce
overhead.

6 RESULTS

Evaluating the performance of HPF implementations in
general is difficult, because very few HPF programs have
yet been written. In particular, it is not known which kind
of alignments and distributions are likely to occur in prac-
tice. For the moment we must therefore assume that all

909

alignments and distributions are equally likely to occur,
and we must try to make all possible cases efficient. In this
paper we have therefore restricted ourselves to those cases
that can be optimized without further knowledge of the
specific structure of a program. In this section, we evaluate
the presented method on index and communication over-
head and on storage overhead. '

6.1 Index Generation Overhead

We have made a comparison between our local enumera-
tion and storage methods and the pattern cyclic method of
Chatterjee et al. [6] with respect to the overhead generated
to access local elements. The results that are shown here are
the execution times of hand-written code that mimics the
behavior of compiler-generated code. We use this code in-
stead of real code because it makes it simpler to evaluate
variants on the implementation, to simulate foreign imple-
mentation schemes, and to ensure the accuracy of the
measurements. The code simulates the execution of the
statement i

A(a*I+b) =

using a one dimensional distributed array of size 40,000.
We assume that the address calculation for A(a*I+b) is
done only once, so that in effect this statement is an incre-
ment operation. This statement was chosen because it
makes it simple to verify that all elements of the array have
been enumerated exactly once, independent of the order in
which they have been enumerated.

We assume that both rowwise and columnwise enu-
meration show the same execution times. In theory the
method we simulate, columnwise enumeration, should
perform slightly worse than rowwise enumeration, be-
cause it requires an additional ged calculation. In practice
the results for both methods showed little difference. We
further assume that pattern cyclic enumeration method
adds an extra array dereference for the look-up table as
compared to the methods described in this paper. This is
more efficient than the original implementation of Chat-
terjee et al., and corresponds to a more recent implemen-
tation described by Kennedy et al. [23] (method (c) on

A(a*I+b) + 1

page 13 in their paper). We ignore the time that is re-

quired for table construction.

For all methods three levels of optimization were as-
sumed. In the slowest variant the global-to-local calculation
of (43) or (47) is done for every element that is enumerated.
In the next. variant only one global-to-local calculation is
done for each row, column or pattern cycle, as discussed in
Section 5.7. In the last variant, all global-to-local calcula-
tions have been eliminated by using a table of pre-
computed values, as discussed in Section 5.8. We assume
that the two optimizations can also be used in the pattern-
cyclic method. Finally, the sequential version of the state-
ment has also been included to serve as a comparison.

The experiment was done on a number of different proc-
essors: a microSPARC II and other SPARC variants, a
Hewlett Packard PA-RISC 1.1, and a MIPS R4400. For the
PA-RISC machine the native Hewlett Packard C compiler
was used with option -0, in all other cases the GNU C
compiler version 2.7.2 was used with option -02. Essen-
tially, all experiments yielded similar results. A typical re-

910

Tow or column ———

atiem cyclic -

fow or column without g2 -+ ...
atiem ool wiout g2

ow or column with table

sequental -+~

Execution time (s)

0.001 L . o

s
100 1000 10000 100000 .
Size of inner loop (elements)

Fig. 8. Execution times for simulated versions of a number of enumera-
tion methods. “row or column” stands for the enumeration method de-
scribed in this paper. The variants “without g2’ assume that only one
global-to-local calculation is necessary for each row, column, or pattern
cycle, as discussed in Section 5.7. In the variant “with table” the starting
points of the rows or columns are precomputed, see Section 5.8.

sult is depicted in Fig. 8 (log-log scale); this is for a micro-
SPARC Il on 85 MHz.
Several observations can be made from this figure:

» For linear access sequences and large inner loops, the
pattern-cyclic method is about 50% slower than the
method described in this paper. Measurements on other
machines yielded similar results (50% to 100% slower).

e On short inner loops (<50) all methods give an in-
creased overhead.

¢ For inner loops larger than 100, the loop overhead is
comparable to pure sequential execution.

e Full global-to-local conversions for arbitrary array ac-
cesses are in all methods expensive (up to about 40
times sequential execution).

fow or column ——
pattem cyclic -—-—-
sequential - -¥---

Execuliontime (5)

0.001 e L o L
1 10000 100000

100 1000
Size of inner laop (elements)

Fig. 9. The execution time of the various enumeration methods of
Fig. 8 for a number of array distributions. Point s shows the execution
time for sequential execution. Points r1, r2 r3show execution times for
rowwise enumeration; points ¢1, ¢2 ¢3show execution times for col-
umnwise enumeration; and points p1, p2 p3show execution times for
pattern cyclic enumeration. The points r1, ¢1, p1 are for an array distri-
bution with m=4, r2 ¢2 p2are for an array distribution with m = 40,
and r3 c3 p3are for an array distribution with m = 400.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

However, there is more to be said. The size of the inner loop
cannot be freely chosen. In both the pattern cyclic and the
rowwise enumeration method, the size of the inner loop is
bounded by m. To illustrate this, consider the example
alignment depicted in Fig. 2. We have taken three different
values of m; m = 4, m = 40, and m = 400 and marked the out-
come of each enumeration method on the curves with only
global-to-local calculations in the outer loop. This is shown in
Fig. 9. As is obvious from the graph, no method is best for all
distributions we considered: For m = 4 and m =40, col-
umnwise enumeration is best, and for m =400 rowwise enu-
meration is best. In general, for small values of m, col-
umnwise iteration will generally produce longer vectors and
hence less overhead. For larger values of m, rowwise and
pattern-cyclic enumeration become more efficient. Pattern-
cyclic enumeration can often span larger vectors than row-
wise enumeration, but incurs more overhead.

6.2 Communication Overhead

The performance of communication is dependent on two
main factors: the time to pack and unpack messages, and
the overhead generated by the message passing run-time
system and the underlying communications hardware. To
judge our method of communication, only the first factor
needs fo be analyzed; the second factor is system depend-
ent. To evaluate the overhead of message packing and un-
packing, we must eliminate other factors that might influ-
ence the results. In particular, we do not want to measure
the time required by the communication system. For these
reasons we have chosen the statement

YHPF$ INDEPENDENT

FORALL(I = 1:N) B(I) = A(N-I+1)
For an even number of processors this statement requires
communication of all elements of the array.

The results of the measurements are shown in Fig. 10.
Three distributions were chosen, block, cyclic, and cyclic(5).
Sequential execution time was also measured. The meas-
urements have been made comparable by executing the
FORALL statement repeatedly, so that the same number of
elements is processed in all cases. The shown execution
times are the sums of the individual times per processor.

swap
1000 T T T

*, ideal parallel -

100 F

Execution time {s)

L L
10 100 1000
Array size

100000

Fig. 10. The total time required for the execution of FORALL (I =1 : N)
A(l) = B(N —1 + 1) on a cluster of four Sun workstations. The time spent
in the communication system is excluded.

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS

In the communication scheme we use (and in other gen-
eral communication schemes), data that is communicated is
copied twice: from the array to be sent into the send buffer,
and from the receive buffer into the receiving array. Since
in this example copying time significant, the parallel ver-
sion of the code will even in the best case require twice the
time of sequential execution. In Fig. 10 this is indicated by
the line “ideal parallel.”

The figure clearly shows that, although the message con-
struction overhead can be large for small array sizes, it
rapidly decreases for larger (and probably more realistic)
array sizes. In fact, for the largest data points it approaches
the 100% overhead we predicted above. Note that the se-
quential execution time increases slightly as the inner loops
get larger. This effect is caused by system-—specific effects,
such as paging.

Inspection of the generated assembly code reveals that
the main differences in execution times between the se-
quential and the parallel versions of the code are due to
specific knowledge about loop variables. Further optimiza-
tion of the parallel code is possible by exploiting specific
knowledge of loop variables and in-lining of function calls.

However, the actual time spent in the message passing
system itself will in general be larger than the packing and
unpacking time. Since packing and message transmission
are overlapped, it might not be useful to further optimize
packing and unpacking, depending on the characteristics of
the message communication system. The graphs also show
that the differences between block, cyclic, or block—cyclic
distributions are minor and do not result in large differ-
ences in the packing and unpacking time.

6.3 Storage Overhead

To evaluate the efficiency of rowwise and columnwise
storage, we have tabulated the overhead of the rowwise and
columnwise storage schemes, see Fig. 11. In principle all of
the parameters 4, b, m, n,, and n; influence the storage over-
head. However, the influence of b can be neglected. For 1, we
have chosen an arbitrary number, 16, but for other values the
overhead plot remains essentially the same. We have chosen
7; 50 that for the maximal value of m that we plot we have
block distribution. Thus n;=m - n,=15 - 16 = 240. For larger
n; the overhead will be less. The remaining parameters, 4 and
m, are plotted against each other.

The overhead is calculated as

n,-n—n;
(4 i
+— (52)

1

where 7 is the required storage size of (41) or (45).
For example, for rowwise storage the overhead of a
number of (g, m) pairs is:

a m_l ne g% N overhead (%)

1 1 15 1 15 0
1 10 2 10 20 33
1 15 1 15 15 0
5 1 75 1 75 400
8 15 8 2 16 7
15 15 15 1 15 0

and for columnwise storage the overhead of these (a, m)
pairs is:

911

a m |, 4 uf n overhead (%)
T 1| 15 1 15 15 0
1 10| 2 10 2 2 33
1 150 1 15 1 15 0
5 1|75 1 15 15 0
8 15 8 2 8 16 7
15 15f 15 1 15 15 0

In the example of Fig. 11, for 23 (4, m) pairs rowwise
storage is more efficient, for 100 pairs columnwise storage
is more efficient, and for 102 pairs both are equally efficient.

1 23 45 67 8 9101112131415 128 43567 8 9101112131415
110 6 0 6 02040 6203346607286 0 10 6 0 6 02040 6203346607386 0
2[* 033 620 033 633 020204040 6 2 * D33 620 033 633 020204040 6
3] *53 06020 64020 03333 63333 0 306 06 0 640 6 03346 67386 0
4] * *233 0603320 6402020 03333 6 4| * *33 0603320 6402020 03333 6
5| * *6626 073463320 640402020 O 5 0 6 0 6 D2040 620 646607386 0
B * * *5320 07360332020 6404020 6l * 0 * 620 033 633 020 6404020
7] ¥ * *804020 0866046332020 640 770 6 0 8 020 0 62033466073 6 0
8| * * * *603320 0866046333320 6 8 * * * *603320 0866046333320 6
9 * * * *80533313 0867360463320 990 6 0 6 0 640 6 03346 67386 O
10} * * *k * *66462613 08673604633 10 * 033. 6 * 033 633 02020404033
1 * * * * *86604026 13 086736046 1110 6 0 6 02040 62033 0607386 ©
12| * = * * * *7353332013 0867360 12| * * * 060 *20 6332020 0333360
13| * * * * * *R266646332013 08673 13/ 0 6 0 6 02040 620334660 086 0
14 * % % % % % x805040332013 086 14 * 033 620 0 * 633 0202040 0 6
15| * = ¥ % % ¥ *93665340262013 O 1510 6 0 6 0 640 6 O 646 67386 O

(a) (b)

12345 6 7 8 0101112131415 1234567 8 9101112131415
110 6 0 6 02040 6203346607386 O = =
2/ * 033 620 033 633 020204040 6 -

3/0 6 0 6 0 640 6 03333 63333 O C

4] * *33 0603320 6402020 03333 6

500 6 0 6 02040 620 640402020 O

6/ * 0 * 620 033 633 020 6404020

710 6 0 6 020 0 62033332020 6 O

8[* * * *g03320 0866046333320 &

990 6 0 6 0 633 6 03346 64633 0 9/ CCCCCCRC=CCCRRC
10{ * 033 6 * 033 613 02020404033 wWceccCcecec=CCCR=CCCC=
11l 0 6 0 6 02040 62013 0607360 0O 11jCCCCCOCCCCR=C=RC
12(* * * 060 *20 6332013 0333360 IR2CC=CC=CC==R=CQC=
13/ 0 6 0 6 02040 620332013 086 O BCCCCCCCUC=RR==C
14/ * 033 620 0 * 633 0202013 0 8 ufcccCccCc=CCCC=R=C
150 6 0 6 0 640 6 0 640 62013 O I3 CCCCCCCCCCRCRR=

() @

Fig.11. A table of the overhead of rowwise (a), columnwise (b), and hy-
brid (c) storage. In all plots mincreases along the horizontal axis from 1
to 15, and a increases along the vertical axis from 1 to 15. All overheads
are given as a percentage of the array 'size. Overheads of 100% or
higher are indicated with a star. Plot (d) shows a map of the choices that
are made for hybrid storage: “C” means columnwise is best, “R” means
rowwise is best, and “=" means both have equal overhead.

7 CONCLUSIONS AND FURTHER RESEARCH

In this paper we have presented an implementation frame-
work for access to and storage of distributed arrays in data
parallel languages such as HPF.

Two methods for local set enumeration and local array
storage have been derived. It is shown that local set enu-
meration and local storage methods can be freely com-
bined. Hence the optimal storage strategy can be chosen,
without having to rearrange local memory if the access
method is changed during the execution of the program.

It has been shown that-implementation of the methods
covers the complete spectrum of HPF distribution functions,
is relatively simple, and requires no tables. For linear itera-
tion sequences access to local memory is shown to be fast and
to approach sequential execution times for sufficiently large
inner loops. The presented framework can be enhanced with
further optimizations by exploiting specific characteristics of
classes of HPF programs. Especially, local loop overhead for
smaller inner loops can be reduced by making use of specific
forms of alignment and array access functions.

912 IEEE TRANSAGCTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

APPENDIX : belus (ES1, Map_C, 0, ME(Map_C, 0),

The following examples show the code generated for a few 1, 10000, 1, 1, 0, &L3, &U3, &S3);

small HPF programs. The programs have been chosen to T1 = L3;
show the translation of as many different features as possi- £Or (cnt3 = (U3-L3+83)/83; cnt3 > 0; cnt3--){

ble. calc_bclusl(ESLl, Map C, 0, T1, &L4, &U4,
The code was derived from actual output of the PRE- &S4) ;
PARE compiler [2], [3], but it has been edited extensively to calc_bclus(ES2, Map C, 1, ME(Mep C, 1), 1,
make it more compact and readable. For the sake of com- 10000, 1, 1, 0, &L5, &U5, &85);
pactness many declarations have been omitted. The func- T2 = L5;
tion sendbuf () is assumed to return immediately after the for (cnt4 = (U5-L5+85)/85;
message has been queued for transmission; the function cntd > 0; cntd-){
waitForAll () is used to wait until all transmissions have calec_bclusl(ES2, Map_C, 1,
been completed, and it is safe to free send buffers. The first T2, L6, U6, S6);
program shows how local computations are handled: 100 = G2L(Map_C, 0, L4);
PROGRAM local 1s0 = G2L(Map_C, 0, L4+S4)-1o0;

lol = G2L(Map_C, 1, L6);
INTEGER, PARAMETER :: N=10000 1sl = G2L(Map_C, 1, L6+S6)=-lol;
INTEGER, DIMENSION(N,N) :: A, B, C J = L4;
INTEGER :: I, J 1d0 = 1lo00;
for (cnt5 = (U4-L4+S4)/S4; cnt5 > 0;
'HPF$ PROCESSORS PA(2,2) ent5-) {
'HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO PA :: A, B I =L6;
I'HPF$ DISTRIBUTE (CYCLIC(5),CYCLIC(5)) 1d1 = loi;
ONTO PA :: C for (cnt6 = (U6-L6+S6)/S6;
cnté > 0; cnt6-){
FORALL (I = 1:N, J = 1:N) *(Cloc+1d0+1d1l) = 10000 * I + J;
A(L,J) =N *TI + J I += 86;
END FORALL 1d1l += 1s1;
FORALL (I = 1:N, J = 1:N) ' }
C(I,J) =N *TI +J J += 84;
END FORALL 140 += 150;
A =B }
END PROGRAM T2 += 85;
This is translated to: }
Tl += 83;
calc_blus(Map_A, 0, ME(Map_A, 0), 1, }
10000, 1, 1, 0, &L1l, &U1l, &81); calc _blus(Map_A, 0, ME(Map_a, 0), 0,
calc_blus(Map_A, 1, ME(Map_a, 1), 1, 9999, 1, 1, 1, L7, U7, 87);
10000, 1, 1, 0,&L2, &U2, &S2); calc_blus(Map_ A, 1, ME(Map_A, 1), 0,
lo0 = G2L(Map_a, 0, L1); 9999, 1, 1, 1, L8, U8, S8);
180 = G2L(Map_A, 0, L1+81)-lol; lo0 = G2L(Map_ A, 0, L7+1);
lol = G2L(Map_a, 1, L2); 180 = G2L(Map_A, 0, L7+S7+1)-100;
;Sl = @G2L{(Map_A, 1, L2+82)=-100; lol = G2L(Map_a, 1, L8+1);
J = Ll; 1sl = G2L(Map_A, 1, L8+S8+1)~lol;
140 = loo; 1d0 = 100;
for (entl = (U1-L1+S1)/S1; cntl > 0; for (cmt7 = (U7-L7+87)/87; cnt7 > 0; cnt7-){
entl--}{ 1d1l = lol;
T = L2; for (cnt8 = (U8-L8+S8)/88; cnt8 > 0;
1d1 = loi; cnt8~) {
for (cnt2 = (U2~L2+82)/82; cnt2 > 0; - *(Aloc+1d0+1dl) = *(Bloc+1d0+1d1l);
oent2=--) { 1d1 += 1sl;
*(Aloc+1d0+1d1) = 10000 * I + J; }
I += 825 140 += 1s0;
1d1 += 1s1; }
}

The second program shows how the communication
between processors is handled. For simplicity the shown
code also constructs and sends messages to the local proc-
essor. The real compiler prevents this.

J += S1;
1d0 += 1s0;

REEUWIJK ET AL.: AN IMPLEMENTATION FRAMEWORK FOR HPF DISTRIBUTED ARRAYS 913

PROGRAM comm

INTEGER, PARAMETER :: N=10000
INTEGER, DIMENSION(N) :: A,B
INTEGER ::

IHPF$ PROCESSORS PA(4)
IHPF$ DISTRIBUTE (BLOCK) ONTO PA :: A, B
FORALL (I = 1:N)
A(I) = B(N-I+1l)
END FORALL
END PROGRAM
This is translated to:

sbuf = (int*) malloc(LSIZ(MapB));
sbufp = sbuf;
for (tol0] = 0; to[0] < 4; to[0]++)(¢
start = sbufp;
calc_blus(MapB, 0, ME(MapB, 0), 1,
10000, 1, -1, 10001,L1, U1, S1);
calc_blus(Map_a, 0, tol0], L1, Ul, 81,
1, 0,&L2, &U2, &S2):;
lo = G2L(MapB, 0, 10001 - I2);
ls = G2L(MapB, 0, 10001 - (L2+S2))-lo;
14 = 10;
for (cntl = (U2-L2+82)/82; entl > 0;
cntl~) {
*(sbufp++) = *(B+1ld);
1ld += 1s;

if (sbufp > start)
sendbuf (Map_A, to[0], (void*)start,
sbufp - start);
}
rbuf = malloc(LSIZ(MapB));
for (from[0] = 0; from[0] < 4;
from[0]++) {
empty = TRUE;
calc_blus(MapB, 0, from[0], 1, 10000,
1, -1, 10001,&L3, &U3, &S83);
calc_blus(Map_ A, 0, ME(Map_A, 0),
L3, U3, 83, 1, 0, &L4, &U4, &S4);
for (cntl = (U4-L4+S4)/8S4; cntl > 0;
cntl-){
empty = FALSE;
break;
}
if (lempty)({
recvbuf (MapB, from[0], (void*)rbuf);
rbufp = rbuf;
lo = G2L(Map_A, 0, L4);
1s = G2L(Map_A, 0, L4+S4)-lo;
1d = lo;
for (ocnt2 = (U4-L4+S4)/84; cnt2 > 0;
cnt2-){
*(A+ld) = *(rbufp++);
1d += 1s8;

}

free(rbuf);
waitForAll();
free(sbuf) ;

ACKNOWLEDGMENTS

The authors wish to thank the referees for their valuable
comments which have improved this paper substantially.

This research is sponsored by SPIN, and by Esprit
through the project PREPARE.

REFERENCES

[1]
[2]

[3}

[4]

[5]

[6]

[71

[8]
191

{101

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

“High Performance Fortran Forum,” High Performance Fortran
Language Specification, ver. 1.1, Nov. 1994.

AH. Veen and M. de Lange, “Overview of the PREPARE Proj-
ect,” Proc. Fourth Int'l Workshop Compilers for Parallel Computers,
H.J. Sips, ed., pp. 365-371, Dec. 1993.

F. Andre, P. Brezany, O. Chéron, W. Denissen, J.L. Pazat, and
K. Sanjari, “A New Compiler Technology for Handling HPF Data
Parallel Constructs,” Proc, Third Workshop on Languages, Compilers,
and Run-time Systems, BK. Szymanski and B. Sinharoy, eds., pp.
279-282, 1995.

A. Choudhary R. Ponnusamy, and J. Saltz, “Runtime-Compilation for
Data Partitioning and Communication Schedule Reuse,” Proc. Super-
computing 1993, pp. 361-370, Nov. 1993. Also available as University
of Maryland Technical Report CS-TR-3055 UMIACS-TR-93-32.

P. Brezany, O. Chéron, K. Sanjari, and E. van Konijnenburg,
“Processing Irregular Codes Containing Arrays with Multi-
Dimensional Distributions by the PREPARE HPF Compiler,”
HPCN Europe ‘95, pp. 526-531. Springer-Verlag, 1995.

S. Chatterjee, J.R. Gilbert, F.J.E. Long, R. Schreiber, and S.-H.
Teng, “Generating Local Addresses and Communication Sets for
Data-Parallel Programs,” |. Parallel and Distributed Computing, vol.
26, no. 1, pp. 72-84, April 1995. First presented at PPoPP"93.

D. Callahan and K. Kennedy, “Compiling Programs for Distrib-
uted-Memory Multiprocessors,” J. Supercomputing, vol. 2, no. 2,
pp- 151-169, Oct. 1988.

M. Gerndt, “Array Distribution in SUPERB,” Proc. Third Int’l
Conference on Supercomputing, Crete, Greece, June 1989.

A. Rogers and K. Pingali, “Process Decomposition Through Lo-
cality of Reference,” Proc. ACM SIGPLAN Int’'l Conf. Program Lan-
guage Design and Implementation, June 1989.

EM. Paalvast, AJ. van Gemund, and H.J. Sips, “A Method for
Parallel Program Generation with an Application to the Booster
Language,” Proc. 1990 Int’l Conf. Supercomputing, pp. 457-469, June
11-15 1990.

C. Koelbel and P. Mehrotra, “Compiling Global Name-Space
Parallel Loops for Distributed Execution,” IEEE Trans. Parallel and
Distributed Systems, vol. 2, no. 4, pp.-440-451, Oct. 1991.

M. Le Fur, J.-L Pazat, and F. Andre, “Static Domain Analysis for
Compiling Commutative Loop Nests,” Publication interne 757,
IRISA, Campus Universitaire de Beaulieu - 35042 Rennes Cedex,
France, Sept 1993. URL: ftp//irisa.irisa.fr/techreports/1993/PI-
757.ps.Z.

C.—V\I;. Tseng, “An Optimizing Fortran D Compiler for MIMD
Distributed Memory Machines,” PhD thesis, Rice Univ., Houston,
Tex., Jan. 1993.

J.M. Stichnoth, “Efficient Compilation of Array Statements for Pri-
vate Memory Multicomputers,” Technical Report CMU-CS-93-109,
School of Computer Science, Carnegie Mellon Univ., Feb. 1993.

JM. Stichnoth, D. O'Hallaron, and T.R. Gross, “Generating
Communication for Array Statements: Design, Implementation
and Evaluation,” J. Parallel and Distributed Computing, vol. 21,
pp- 150-159, 1994.

S.K.S. Gupta, S.D. Kaushik, S. Mufti, S. Sharma, C.-H Huang, and
P. Sadayappan, “On Compiling Array Expressions for Efficient
Execution on Distributed -Memory Machines,” Proc. Int'l Conf.
Parallel Processing, vol. II, pp. 301-305, Aug. 1993.)
S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan,
“On Compiling Array Expressions for Efficient Execution on Dis-
tributed-Memory Machines,” Technical Report OSU-CISRC-4/94-
TR19, Ohio State Univ.,, Columbus, OH 43210, 1994. URL:
ftp:/ /archive.cis.ohio-state.edu/ pub/tech-report/1994/TR19.ps.gz.
S.D. Kaushik, C.-H. Huang, and P. Sadayappan, “Incremental
Generation of Index Sets for Array Statement Execution on Dis-
tributed-Memory Machines,” Proc. Seventh Ann. Workshop Lan-
guages and Compilers for Parallel Computing, pp. 17.1-17.18, Cornell
Univ., Aug. 1994. Also published in LNCS 892, pp 251-265, 1995,
Springer Verlag,.

C 914

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 9, SEPTEMBER 1996

S. Benkner, P. Brezany, and H. Zima, “Processing Array State-
ments and Procedure Interfaces in the PREPARE High Perform-
ance Fortran Compiler,” Compiler Construction, Proc. Fifth Int'l
Conf, P.A. Fritzon, ed., vol. 786 of LNCS. Springer-Verlag, pp. 324~
338, Apr. 1994.

C. Ancourt, F. Irigoin, F. Coelho, and R. Keryell, “A Linear Alge-
bra Framework for Static HPF Code Distribution,” Technical Re-
port A-278-CRI, Ecole des Mines, Paris, Nov. 1995. An earlier ver-
sion was presented at the Fourth Int’l Workshop on Compilers for
Parallel Computers, Delft, The Netherlands, pp. 117-132, Dec. 1993.

S. Hiranandani, K. Kennedy, J. Mellor-Crummey, and A. Sethi,
“Compilation Techniques for Block-Cyclic Distributions,” Proc.
Intl. Conf. Supercomputing, pp. 392-403, July 1994.

A. Thirumalai and J. Ramanujam, “Fast Address Sequence Gen-
eration for Data-Parallel Programs Using Integer Lattices,” Proc.
Eighth Int'l Workshop Languages and Compilers for Parallel Comput-
ing, pp. 13.1-13.19, 1995.

K. Kennedy, N. Nedeljkovic’, and A. Sethi, “A Linear-Time Algo-

rithm for Computing the Memory Access Sequence in Data-
Parallel Programs,” Proc. Fifth ACM SIGPLAN Symp. Principles and

Practice of Parallel Programming, 1995.

S.D. Kaushik, C.-H. Huang, and P. Sadayappan, “Compiling Ar-
ray Statements for Efficient Execution on Distributed Memory
Machines: Two-Level Mappings,” Proc. Eighth Ann. Workshop
Languages and Compilers for Parallel Computing. pp. 14.1-14.15,
Ohio State Univ., Aug. 1995.

K. Kennedy, N. Nedeljkovic’, and A. Sethi, “A Linear Time Algo-
rithm for Computing the Memory Access Sequence in Data-
Parallel Programs,” Proc. Symp. Principles and Practice of Parallel
Programming, pp. 102-111, ACM, 1995. Proceedings also published
as Sigplan Notices, vol. 30, no. 8.

K. Kennedy, N. Nedeljkovic’, and A. Sethi, “Efficient Address
Generation for Block-Cyclic Distributions,” Proc. Intl. Conf. Super-
computing, pp. 180-184, June 1995.

C. Koelbel, “Compile-Time Generation of Regular Communica~
tion Patterns,” Proc. Supercomputing 1991, pp. 101-110, ACM, 1991.
EM. Paalvast, HJ. Sips, and L.C. Breebaart, “Booster: A High-
Level Language for Portable Parallel Algorithms,” Applied Nu-
merical Mathematics, vol. 8, no. 6, pp. 177-192, 1991.

E.M. Paalvast, “Programming for Parallelism and Compiling for
Efficiency,” PhD thesis, Delft Univ. of Technology, June 1992.
E.M. Paalvast, H.]. Sips, and A.J. van Gemund, “Automatic Par-
allel Program Generation and Optimization from Data Decompo-
sitions,” Proc. 1991 Int’l Conf. Parallel Processing, pp. I 124-131,
Aug. 1991.

Y. Mahéo and J.-L. Pazat, “Distributed Array Management for
HPF Compilers,” Publication interne 787, IRISA, Campus Univer-
sitaire de Beaulieu-35042 Rennes Cedex, France, Dec. 1993. URL:
ftp:/ /irisa.irisa.fr/techreports /1993 /PI-787.ps.Z.

[32] K.H. Rosen, Elementary Number Theory And Its Applications. Addi-

son Wesley, 1984.

[33] H. Zima and B. Chapman, Supercompilers for Parallel and Vector

Computers. ACM Press, Frontier Series, 1991.

[34] M. Wolfe, High Performance Compilers for Parallel Computing. Addi-

son-Wesley, 1995.

Kees van Reeuwijk received his MSc degree in
1986 in electrical engineering and his PhD de-
gree in 1991 from Delft University of Technol-
ogy, Delft, The Netherlands. Currently he is a
post doctoral researcher in the research group
Computational Physics at Delft- University of
Technology. His research interests include
compiler construction, programming language
design, and silicon compilation

Will Denissen received his MS degree in elec-
trical engineering from the Technical University
of Eindhoven, The Netherlands, in 1987. He is
currently employed by the Duich Organisation
for Applied Scientific Research (TNO). His re-
search interests include parallel and distributed
programming, parallel arhitectures, perform-
ance, and scalability compilation.

Henk J. Sips received his MSc degree in 1976
in electrical engineering and his PhD degree in
1984 from Delft University of Technology, Delft,
The Netherlands. Currently he is an associate
professor in computational physics the Delft
University of Technology, and a professor in
computer science at the University of Amster-
dam. His research interests include computer
architecture, parallel programming, parallel algo-
rithms, and distributed systems.

Edwin M.R.M. Paalvast obtained his MS de-
gree in computer science and mathematics at
Leiden University in the area of parallel and
distributed computing and operations research,
respectively. Since 1987 he worked for the
Dutch Organisation for Applied Scientific Re-
search (TNO). In 1992, he finished his PhD at
Delft University of Technology on the subject of
compilers and languages for parallel computers.
Since 1995, he has worked as a senior consult-
ant for Bakkenist Management Consultants.

