Spar: a set of extensions to Java for scientific
computation’

C. van Reeuwijk, F. Kuijlman, and H.J. Sips
Delft University of Technology
email: C.vanReeuwijk@cs.tudelft.nl

ABSTRACT

In this paper we present a set of language extensions that
improve the expressiveness and performance of Java for sci-
entific computation. The language extensions allow the ma-
nipulation of multi-dimensional arrays to be expressed more
naturally, and to be implemented more efficiently. Further-
more, data-parallel programming is supported, allowing effi-
cient parallelization of a large class of operations on arrays.
We also provide language extensions to construct special-
ized array representations, such as symmetric, block, and
sparse matrices. These extensions are: tuples, parameter-
ized types, array subscript overloading, and the inline mod-
ifier. These extensions are not only useful to construct spe-
cial array representations, but are also useful in their own
right. Finally, we add complex numbers as a primitive type
to the language.

We evaluate our language extensions using performance
results. We also compare relevant code fragments of our
extended language with standard Java implementations and
language extensions proposed by others.

General Terms

Language Design, Scientific Computation

Keywords

Java, multi-dimensional array, tuple, parameterized type

1. INTRODUCTION

It is more and more apparent that there is a need for a
good programming language for scientific applications. Tra-
ditionally, Fortran has been used for this purpose, but it
lacks the strict typing, object orientation, and more rigor-
ous language design of more modern programming languages

*This research was supported by NWO (project ‘Automap’),
Esprit (LTR Project ‘Joses’ (#28198)), and Delft University
of Technology (DIOC project ‘Ubicom’).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM 0-89791-88-6/97/05 ..$5.00

such as C, C++, and Java. For this reason more and more
scientific programs are written in C, C++, and Java.

However, Fortran still has a number of features that make
it particularly useful for scientific programs, namely multi-
dimensional arrays, complex numbers, and, in later versions,
array expressions and data-parallel programming. More-
over, Fortran compilers tend to produce highly efficient code
compared to compilers for other languages.

We think that it is time to replace Fortran with a modern
language that also provides these features. Furthermore,
experience with scientific programs in Fortran has shown
that support for structured parallel programming and for
specialized arrays (block, sparse, symmetric, etc.) is also
desirable.

Based on these principles we have designed a set of lan-
guage extensions for Java. We call the resulting language
Spar/Java, where Spar is the name of the language exten-
sions for scientific computing.

This paper expands on [23], where the design of an earlier
version of Spar was described. The previous paper described
the initially designed language constructs; in this paper we
describe the language constructs of the latest, implemented,
version of Spar, and compare Spar/Java with Java, C, C++,
and HPF with respect to expressiveness and performance.
We also compare our language constructs with other lan-
guage extensions for Java, and discuss the implementation
of Spar.

Support for multi-dimensional arrays is described and eval-
uated in §2. The language constructs for parallelization are
briefly described in §3. They are described and evaluated in
more detail elsewhere [25, 24].

To support specialized arrays, we could have provided a
pre-defined set of specialized types, but there is such a wide
variety of specialized array types that this approach is too
inflexible. Instead, we provide a toolkit to let the user build
his/her own array representation. This toolkit consists of:
overloading of the subscript operator; parameterized classes;
tuples and vector tuples; and the inline modifier. In §4
the reasons for providing this set of language extensions,
the definition of the extensions, and an evaluation of the
resulting support for specialized arrays are given.

Spar/Java supports complex numbers because they are
important for scientific computation. The language exten-
sions for this are described in §5. Complex numbers are used
in the example of §8.

Most of the language constructs in the toolkit are useful
beyond their original purpose, and we have been careful not
to spoil their generality. A number of noteworthy other

applications of the constructs are discussed in §6.

To demonstrate the practicality of our language exten-
sions, we have implemented a compiler for Spar/Java. It is
described in §7. We evaluate the performance of our demon-
stration compiler with the FFT benchmark from the NAS
benchmark suite, see §8.

Since we extend Java, in principle the JVM instruction set
must also be extended, because the Java Virtual Machine
uses an instruction set that has specifically been designed
for Java. Since for several reasons this is not practical, it
is worthwhile to consider alternative solutions. These issues
are discussed in §9.

Finally, related work is discussed in §10, we draw some
conclusions in §11, and we describe future work in §12.

For the sake of brevity, in this paper we only describe
the language constructs by example. In the Spar Language
Specification [22] the constructs are strictly defined in a
manner similar to the Java Language Specification [11].

2. MULTI-DIMENSIONAL ARRAYS

Many scientific programs work on multi-dimensional ar-
rays. For example, many problems are formulated as ma-
trix operations. In a programming language, a matrix is
most naturally represented as a two-dimensional array. As
another example, many simulation problems are solved by
introducing a regular two-dimensional or three-dimensional
grid. In a programming language, such a grid is most natu-
rally represented as a multi-dimensional array.

In many languages, including Java, it is assumed that it is
sufficient to provide one-dimensional arrays, and that multi-
dimensional arrays can be represented as arrays of arrays.
We will call this the nested array representation.

Unfortunately the nested array representation has some
drawbacks that can greatly influence performance:

e Memory layout for nested arrays is dependent on de-
tails of the memory allocator. The rows of an array
may be scattered throughout memory. This deterio-
rates cache behavior.

e For nested arrays, the compiler must take into account
array aliasing (two array rows are the same within an
array, or even between arrays), and ragged arrays (ar-
ray rows have different lengths). This complicates code
optimization.

e Garbage collection overhead for nested arrays is larger,
since all rows of the array are administrated indepen-
dently.

e Nested arrays are difficult to use in data-parallel pro-
gramming, since extensive analysis is required before
efficient communication code can be generated.

For these reasons we add true multi-dimensional arrays to
Java. For example, a two-dimensional array in Spar/Java is
declared and used as follows:

int a[*,*] = new int[10,10];

for(int i=0; i<a.GetSize(0); i++)
for(int j=0; j<a.GetSize(1); j++)
ali,jl = i+j;
In general, arrays are indexed by a list of expressions instead
of a single expression. Similarly, in an array creation ex-
pression a list of sizes is given instead of a single size. These

features are straightforward generalizations of existing Java
language constructs.

In the declaration of array types it is now also necessary
to specify the number of dimensions (the rank) of an ar-
ray. This is done with a comma separated list of ‘*’. For
compatibility with Java, an empty list of is not interpreted
as a zero-dimensional array, but as a one-dimensional array.
Thus, the types int b[*] and int b[] are equivalent.

Spar also allows an alternative notation to specify the
rank. For example, the two type expressions int [*,*] and
int [*°2] are equivalent. In general an arbitrary expres-
sion is allowed after the ‘~’, provided that it is a non-negative
compile-time constant of type int. Although the alternative
notation is less readable, it allows for much more flexibility.
For example, it allows the rank of an array to be dependent
on a parameter of a parameterized type.

The GetSize(int) method shown in the example returns
the size of the array in the given dimension. This is an im-
plicitly defined method on the array, similar to the clone()
method that is defined on arrays in standard Java. There
also is a GetSize () method without parameters that returns
a vector tuple with the lengths of the array. See §4.2 for a
description of vector tuples.

2.1 Anexample: array transposition

As a simple illustration of the costs of multi-dimensional
versus nested arrays, consider the following loop, which copies
the transpose of array B into array A:

for(int i=0; i<M; i++)

for(int j=0; j<M; j++)
ATil1[3] = BL[j1[il;
The variant using multi-dimensional arrays is:
for(int i=0; i<M; i++)
for(int j=0; j<M; j++)
Ali,31 = B[j,il;

We measured the execution times of these programs for
int arrays of 2197 x 2197 elements, for 40 runs of this loop.
We also measured the execution times of the analogous pro-
grams working on three-dimensional arrays of 169 x 169 x 169
elements, again for 40 runs of the loop.

Note that in both cases the arrays contain the same num-
ber of elements (4826809), so the difference in execution time
between these programs is an indication of the overhead of
using an extra dimension.

We compiled both versions of the program with our own
‘Timber’ compiler (see §7), and measured the execution time
of the resulting programs. For comparison we also mea-
sured the execution time of the Java variants of these pro-
grams using the Java HotSpot 1.3.0 Client VM. The pro-
grams were executed on a 466 MHz Celeron with 256 MB of
memory running Linux 2.2.18. The Timber compiler used
the Gnu C++ 2.95.2 with the options -06 -funroll-loops
-fomit-frame-pointer. The shown execution times are in
seconds.

Array type - compiler 2D array 3D array

Nested - Timber 64.9 123.7
Nested - Hotspot 60.6 84.6
Multidim. - Timber 6.3 7.2

The significantly larger execution times of the programs
with nested arrays is caused by several factors. An indica-
tion of the overhead of one factor, bounds checking, can be

found by disabling the generation of bounds checking code
in the Timber compiler, and measuring the execution times
again. In that case the results are (bounds checking of the
HotSpot compiler cannot be disabled):

Array type - compiler 2D array 3D array

Nested - Timber 44.4 70.5
Nested - Hotspot - -
Multidim. - Timber 6.3 7.1

As these results indicate, for the multi-dimensional array
representation the overhead of bounds checking is limited.
For the nested array representation the overhead of bounds
checking is larger, but there are other significant factors that
contribute to the larger execution times, such as null pointer
checks, memory layout issues and more complicated array
index calculations.

3. PARALLELIZATION CONSTRUCTS

Since parallelization of scientific programs is often very
important, we want to support parallelization in our com-
piler. As a minimum, we want to support data-parallel op-
erations on multi-dimensional arrays.

To support this feature a number of language constructs
had to be added; we will briefly describe them in this section.

3.1 The each and foreach Statements

The parallelization constructs have been designed to make
them as safe as possible, while still allowing the compiler
to derive opportunities for parallelism from them. For this
purpose the each and foreach commands are provided.

Given a program block such as:

each {a=1; b=1; }

the compiler may choose one of the execution orders
a=1; b=1; or b=1; a=1;. In general the state-
ments in an each block may be of arbitrary complexity.
They are executed in arbitrary order, but once the execution
of a statement is started, it must be completed before the
next one is started. Thus, execution of the code fragment:

each {a=1; {a=2;b=a; }}

will always result in b having the value 2. However, a may
have the value 1 or 2, depending on the order in which the
two elements of the each were executed.

The foreach statement is a parameterized version of the
each statement. The iteration range is specified as a lower
bound (default 0), upper bound, and stride (default 1).
These values are evaluated exactly once before execution
of the loop. The iteration variable is implicitly declared
as a local final int variable of the loop. The iteration
range specification—consisting of iteration variable, bounds
and stride—is called a cardinality. Similar to the each state-
ment, the compiler may choose any order for the execution
of the iterations. Although the iterations in a foreach state-
ment can be executed in arbitrary order, once an iteration is
started, it must be completed before the next one is started.
Parallel execution is only allowed when there is no observ-
able interference between iterations. To discover this, the
compiler must do some data-dependency analysis (although
less extensive than for sequential loops).

For example, the following foreach statement fills an ar-
ray with 0:

foreach(i :- 0:n) a[i] = 0;

We can safely use a foreach since we are not interested in
the order in which the array is filled.

The foreach statement cannot use the iteration range
specification of the Java for statement, since the iterator
value for each iteration is defined relative to the iterator of
the previous iteration. This makes it less suitable for parallel
loops.

3.2 Cardinality lists

The foreach shown in the previous section contains one
cardinality. In general a foreach statement can have an ar-

bitrary number of cardinalities. For example, a two-dimensional

array a can be filled with 0 with the following loop:

foreach(i :- 0:a.GetSize(0), j :- O:a.GetSize(1))
ali,jl = 0;

Such a cardinality list specifies a multi-dimensional iteration
space. In case of the foreach statement this iteration space
can be enumerated in arbitrary order. Note that this is
different from a nested pair of foreach statements. The
loops:

foreach(i :- 0:a.GetSize(0))
foreach(j :- 0:a.GetSize(1)) ali,jl = 0;

also fill the array a with 0, but in this case all iterations
of the inner foreach must be completed before the next
iteration of the outer foreach can be executed.

3.3 Vector cardinalities

As a further refinement, vector cardinalities are supported,
where a vector tuple is iterated over a multi-dimensional
iteration space. See §4.2 for a description of vector tuples.
For example, the zeroing of array a can also be written as
follows:

foreach(v :- 0:a.GetSize()) a@v = 0;

3.4 Cardinality lists and for loops

Cardinality lists are also useful for sequential loops, since
they allow a more compact notation for a very common case.
Moreover, loops with cardinality lists tend to be easier to
analyze, which makes it easier for the compiler to generate
efficient code.

3.5 for statement inlining

Finally, Spar allows for loops to be unrolled explicitly,
by annotating the loop with the inline modifier. Such an
inline for statement must have a cardinality list with only
compile-time constants.

The inline for statement is necessary for operations on
tuples, see §4.2, and is also useful to force loop unrolling for
performance reasons.

For example, the following loop:

inline for(i :- 0:4) a[i] = i;

is expanded by the compiler to:

al[0] = 0;
a[1] = 1;
a[2] = 2;
a[3] = 3;

4. SPECIALIZED ARRAY REPRESENTA-
TIONS

An important design goal of our languages extensions is
to provide good support for more specialized array repre-
sentations such as block, symmetric, sparse, etc. arrays. A
number of language extensions have been introduced to al-
low efficient, generic, and readable implementations of such
arrays and of their uses. These extensions are:

e Overloading of the subscript operator.
e Parameterized classes.
e Tuples and vector tuples.

e The inline modifier.

Overloading of the subscript operator greatly improves
the readability of the manipulation of specialized arrays.
Parameterized classes allow generic implementations of spe-
cialized arrays. In particular, the implementations can be
generic in the element type and the number of dimensions.
To be able to express manipulations on arrays with different
numbers of dimensions generically, it is necessary to intro-
duce vector tuples. Finally, to ensure that the use of spe-
cialized arrays is as efficient as the use of standard arrays, it
is necessary that some methods are always inlined, in par-
ticular methods that access array elements. This may not
always be detectable by a compiler, so it is important to
allow the user to force inlining of some methods.

4.1 Parameterized classes

In its simplest form support for specialized array repre-
sentations can be provided by a standard Java class. The
class java.util.Vector can be seen as an example. Un-
fortunately, such support must be limited, since it is not
possible to abstract from parameters such as the element
type, rank, or from ‘tuning’ parameters such as block sizes
or allocation increments.

For example, for java.util.Vector it would be desirable
to provide the element type of the vector as a parame-
ter. This would help to enforce stricter type checking on
the elements of a vector. It would also allow a more effi-
cient implementation, in particular for vectors of primitive
types, since in the current implementation elements of prim-
itive types must be wrapped in instances of classes such as
java.lang.Double.

Support for some form of class parameterization is there-
fore highly desirable. A number of proposals have been made
to add class parameterization to Java [7, 15, 29]. Also, there
is a proposal in the Java Community process [6] to add [7]
to standard Java.

To avoid having to extend the existing JVM definition—

which would render all existing JVM implementations obsolete—

most proposals only allow reference classes as parameters.
With this restriction, parameterized classes can be rewritten
as operations on an unrestricted version of the class, and a
number of casts and assertions. Unfortunately, this restric-
tion makes these proposals unsuitable for our purposes, since
we require parameterization with primitive types (e.g. for
element types of the specialized arrays), and with numeric
values (e.g. for numbers of dimensions).

Therefore, Spar provides a different class parameteriza-
tion mechanism, based on template instantiation®. Using

' A common objection against the the template instantia-

this approach, very efficient class instantiation is possible.
Moreover, arbitrary type parameters and value parameters
can be supported.

For example, in Spar/Java we provide a typed vector in
spar.util.Vector, which is implemented as follows (sim-
plified):

final class Vector(| type t |)

{
protected t elementData[] = null;
public Vector(D{}
public Vector(int initCap){
ensureCapacity(initCap);
}
// Etc.
}

the sequence (| type t |) is the list of parameters of the
class. The list of parameters can be of arbitrary length. Pa-
rameters can be of type type, and of primitive types. Actual
parameters of a class must be types, or evaluate to compile-
time constants. For every different list of actual parameters
a class instance is created with the actual parameters sub-
stituted for the formal parameters.
Class spar.util.Vector can be used as follows:

// Create a new instance of an int vector with initial
// capacity 20.
Vector(| type int |) v = new Vector(| type int [|)(20);

The keyword type is used to introduce actual type pa-
rameters. For primitive types it can be omitted. Thus, the
following is also allowed:

Vector(| int |) v = new Vector(| int [)(20);

4.2 \ector tuples

To allow generic implementations of specialized arrays, it
is necessary to allow a list of subscript expressions to be
treated as a single entity, regardless of its length (and hence
regardless of the rank of the subscripted array). This is eas-
ily possible by considering subscript lists as tuples. Thus,
an ordinary array index expression such as a[1,2] is con-
sidered as the application of an implicit index operator on
an array (a), and a tuple ([1,2]).

Spar generalizes this by allowing tuples as ‘first class cit-
izens’ that can be constructed, assigned, passed as param-
eters, and examined, independent of array contexts. Spar
also provides an explicit array subscript operator ‘@’. The
following code shows tuples and the @ operator in use:

[int~2] v = [1,2]; // Declare, init. tuple
int a[*,*] = new int[4,4]; // Declare, init. array

a@v = 3; // Assign to al1,2]
v[0] = 2; // Tuple is now [2,2]
av = 5; // Assign to al2,2]

Traditional index expressions are considered a special case
of general array subscription where the @ operator can be
omitted. Thus, a[1,2] and a@[1,2] are equivalent.

The '@ operator can also be used in new expressions for
arrays. For example:

tion mechanism is that it causes ‘code bloat’. Provided that
templates are used in moderation, we do not consider this
disadvantage significant. This assessment is supported by
experience: a large part of our Spar/Java compiler is imple-
mented using a template preprocessor [21, 20|, and it does
not suffer from ‘code bloat’.

[int~2] sz
int a[*,x]

[10,10];
new int@sz;

4.3 Subscript operator overloading

In Java, elements in array-like classes must be accessed
using explicit methods, instead of the much more compact
array index notation using @. For example, to swap ele-
ments 0 and 1 of a java.util.Vector instance v requires
the following code:

Object h = v.elementAt(0);
v.setElementAt(v.elementAt(1),0);
v.setElementAt(h,1);

Such a notation is acceptable for occasional use, but is too
awkward for intensive manipulations.

For this reason, Spar supports overloading of the index
operator. If an index operator is used on an expression of
a class type, this expression is translated to an invocation
to a method getElement or setElement, depending on the
context.

For example, assuming ‘v’ is a class instance, the state-
ment:

v[0] = v[1];
is translated to:

v.setElement([0], v.getElement([1]));

Obviously, the class must implement getElement and
setElement for this convention to work.

At first sight it seems more obvious to choose an existing
pair of functions instead of setElement and getElement.
Unfortunately, the standard Java library is not consistent
on this point: java.util.Vector uses setElementAt and
elementAt, java.util.Hashtable uses get and put, etc.
Moreover, for reasons of generality the methods getElement
and setElement take a vector tuple as parameter, which
makes them incompatible with any Java method anyway.

4.4 Example

To demonstrate how the new language constructs can be
used to implement specialized array representations, we im-
plement ‘elastic’ arrays. Elastic arrays are similar to or-
dinary arrays, except that they can be grown and shrunk
during their lifetime.

The implementation of the class is as follows:

public class ElasticArray(|type T,int n|)
{
private T arr[*°n];
public ElasticArray([int"n] sz){
arr = new T@sz;
}
public inline T getElement([int"n] ix){
return arrQix;
}
public inline void setElement([int~n] ix,T val)q{
arrQix = val;
}
void SetSize([int~n] sz){
T newarr[*°n] = new TQ@sz;
[int"n] oldsz = arr.getSize();

[int~n] overlap;

inline for(i :- O:n)
overlap[i] = Math.min(oldsz[i], sz[i]);
for(v :- O:overlap)

newarr@Qv = arrQv;

arr = newarr;
}
}

The class is parameterized with the element type of the array
T, and the rank of the array n. The constructor for the
class constructs a new array instance with the vector sz
specifying the sizes of the dimensions of the array. The
methods getElement and setElement allow index operator
overloading, and the method SetSize changes the sizes of
the array. All elements that are accessible in both the old
and the new version of the array are copied, all other visible
elements are initialized to their default value.
ElasticArray can now be used as follows:

ElasticArray(lint,2|) a =
new ElasticArray(|int,2])([10,10]);
a[5,3] = 3;
a.SetSize([8,16]);
a[2,1] = a[5,3];

To get an impression of the performance of such a special-
ized array representation, we run the array transposition
benchmark of §2.1 on elastic arrays. For comparison the
results for ordinary multi-dimensional arrays from §2.1 are
repeated. All measurements are with our Timber compiler,
on arrays of the same size.

Array type 2D array 3D array
Standard 6.3 7.2
Elastic 9.5 15.1

The difference in performance between elastic arrays and
standard arrays is caused by the fact that the array is con-
tained in an instantiation of the class ElasticArray. This
prevents some optimizations, e.g. bound check simplifica-
tion and some array index simplification. The performance
can be improved fairly easily with more sophisticated anal-
ysis. Alternatively, it may be possible to do ‘unboxing’ of
the ElasticArray instantiation, which essentially replaces
the class with a tuple.

5. COMPLEX NUMBERS

Complex numbers are used in many scientific computa-
tions, so it is very desirable to have a compact notation and
efficient support for them. The most obvious approach is
to introduce a new class to represent complex numbers, and
manipulations on them. This approach has been proposed,
among others, by the Java Grande Forum [2] and for use
with the IBM Ninja compiler [1, 14].

Unfortunately, this approach has some drawbacks: com-
plex numbers are stored in allocated memory, manipulations
on complex numbers must still be expressed as method invo-
cations, and the complex class is still a reference type, which
means that values can be aliased. To a certain extent these
problems can be reduced by a smart compiler, especially if
it is able to recognize the complex number class and exploit
its known properties. Nevertheless, it is unlikely that such
optimizations are successful in all cases.

Spar uses a more robust solution: it introduces a new
primitive type complex. The operators *, /, + and -
are generalized to handle complex numbers; and narrow-
ing and widening conversions are generalized. Also, a
wrapper class java.lang.Complex is added, similar to e.g.
java.lang.Double. The class java.lang.Complex also con-
tains a number of transcendental functions similar to those

in java.lang.Math. To simplify the notation of complex
constants, a new floating point suffix ‘i’ has been added
to denote an imaginary number. Together these additions
allow code like this:

complex cl = 1.0+2.0i;
complex c2 = 12-3i;
complex c3 = cl*c2;

complex c4 = Complex.sin(c3);

6. SPINOFFS

Many of the language constructs that we introduced for
parallelization or the construction of specialized arrays are
useful beyond their original purpose, and we have been care-
ful not to spoil their generality. In a number of cases the
more general applications are obvious (parameterized types,
iteration spaces defined by cardinality lists), two important
other ‘spinoffs’ are described in this section.

6.1 Other uses of tuples

As explained above, tuples of int elements are essential
for the implementation of specialized array representations
that are generic in the number of dimensions. With a little
generalization it is possible to make tuples into a construct
that is useful for other purposes as well.

Until now only wvector tuples have been shown: tuples
where all elements have the same type. Spar in fact sup-
ports tuples with mixed element types. These are declared
and used as in the following example:

[int,boolean] val = [12,true]; // Declare, init. ’val’
val[0] = 8; // Now val [8,truel
val[1] = false; // Now val [8,false]

In general a tuple may have fields of arbitrary types, includ-
ing reference types and other tuples.

As shown in this example, individual elements can be ac-
cessed by indexing. Index expressions must be compile-time
constants, so that the compiler can determine the type of
the selected element.

Elements can also be accessed by pattern matching. For
example, assuming a tuple val as in the previous example,
its elements can also be accessed as follows:

int n;
boolean b;
[n,b] = val;

Tuples can be used in a number of idioms that are other-
wise more awkward to express. For example, the following
statement exchanges the values of a and b:

[a,b] = [b,al;

Tuples also allow functions with multiple return values,
such as a function that searches a list, and returns both a
success flag, and the position of the match:

static [boolean,int] search(int a[], int val)
{
for(int i=0; i<a.length; i++)
if(a[i] == val) return [true,i];
return [false,0];

}
This function would be used as follows:
int ix;
boolean found;
[found,ix] = search(a, 42);

The standard operators have been generalized to work
on tuples. Unary operators apply to each element; binary
operators on two tuples apply to corresponding elements;
binary operators on a scalar and a tuple apply the scalar
value to each element. This way tuples can be used as light-
weight representations of coordinates and other groups of
values, and common calculations on these coordinates can
be expressed very easily. For example, the following function
calculates the point in the middle of the line between two
given points:

static [double~3] midpoint([double~3] a, [double~3] b)
{

return (a+b)/2;
}

If the same function would have to be expressed on the tu-
ples used in Java3D [28], the function would be more cum-
bersome:

static Tuple3d midpoint(Tuple3d a, Tuple3d b){
return new Tuple3d(
(a.x+b.x)/2,
(a.y+b.y)/2,
(a.z+b.z)/2
);
}

Moreover, this variant requires dynamic memory allocation,
whereas tuples do not.

6.2 Generic algorithms

The generic approach to array support also allows some
algorithms to be expressed more generally. One researcher
from the numerical community, Gabor Toth, considered this
so important that he wrote a preprocessor for Fortran, called
LASY [30], to implement this. To quote from the introduc-
tion:

The Loop Annotation Syntax (LASY) was
developed as part of the Versatile Advection Code
(VAC) software package which can solve conser-
vation laws, e.g. hydrodynamics and magneto-
hydrodynamics, in 1, 2, and 3 dimensional grids.
The usual practice is to write a simple 1D code
first, then to modify it for 2D simulations, and
finally, years later, to rewrite the whole code for
3D. In the VAC project a different route was
taken, namely a single general software was de-
signed from the beginning, which can do simula-
tions in any number of dimensions.

Such generality is not possible in standard Fortran, so the
author wrote a preprocessor to generate specialized Fortran
code for each number of dimensions from a generic code.

The toolkit that Spar provides to build specialized arrays
also allows implementing such generic algorithms.

7. THE COMPILER

To demonstrate the practicality of our language exten-
sions, we have implemented a compiler for Spar/Java. It
largely implements Java as described in the Java Language
Specification 2nd edition [11]. To keep the compiler simple
enough to implement in our research group, our current im-
plementation does not support threads and dynamic class
loading. Also, inner classes and interfaces are only partially
supported. These restrictions were imposed for practical

reasons, and are not fundamental to the Spar/Java language
design.

The compiler does not generate JVM (Java Virtual Ma-
chine) code; since the compiler handles a superset of stan-
dard Java, it is not clear if this is possible at all. This issue
is discussed in §9.

The compiler works on full programs. It consists of a
frontend that generates code in the intermediate language
Vnus [9], a number of parallelization engines that work on
Vnus, and a backend that converts from Vnus to C++. The
compiler contains optimizers that avoid compiling unused
code, eliminate and optimize null pointer checks, eliminate
static class administration, simplify expressions, and elimi-
nate and optimize bound checks.

Generating C++ has as advantage that the compiler is in-

dependent of the target processor, and hence is very portable.

It has as disadvantage that the optimizers in the C++ com-
piler are not tuned to Spar/Java programs, and sometimes
must make more pessimistic assumptions about code prop-
erties. For example, since C++ pointers can point in the
middle of an array, and since pointers can be cast to and
from almost any other type; the compiler must take this
into account when analyzing a C++ program. In contrast,
Spar/Java references (which are translated to pointers), can-
not point into arrays, and casting between reference types
is much more restricted.

The current compiler generates code to maintain a precise
root set (set of active references in the program state). This
information is sufficient to implement a mark-sweep garbage
collection system.

At the moment the parallelization engines generate SPMD
(Single Program Multiple Data) code with explicit message
passing. We demand very little of the communication li-
brary we use: we need a send and receive function, and if a
broadcast or multicast is supported, we can use it. For this
reason we can use almost any communication library. We
currently support the communication libraries PVM, MPI,
and Panda [26, 27].

The compiler is available for downloading at [19]. It is
provided under the Gnu Public License (GPL).

8. A LARGER EXAMPLE: FFT

As a larger example, we have studied the FFT bench-
mark? from version 2.3 of the NASA Numerical Aerospace
Simulation group (NAS) parallel benchmark suite [16, 10].
We have implemented this program in several programming
languages®. We have measured the execution times of the
different implementations.

In all cases dataset ‘W’ was executed: a 3D Fast Fourier
Transform on a 128 x 128 x 32 array. All given times are
total execution times in seconds. When possible, two mea-
surements where made: execution times were measured with
bounds checking and null pointer checks enabled, and with
both these checks disabled. This gives an impression of the
overhead of these checks, and allows better comparison with
C and C++.

8.1 Sequential results

2We have in fact implemented most of the NAS benchmarks
in Spar/Java, see [17] for details

3The Fortran 77/MPI version is the original NAS program;
Michael Frumkin from NASA was kind enough to provide
us with the HPF version.

Compiler Language Time (s) Time (s)

(no checks)
Timber Java 22.9 16.4
HotSpot Java 22.7 -
Timber Spar/Java 14.3 12.5
g++ C++ - 10.3
gee C - 7.4

Figure 1: Sequential execution times of the NAS
FFT benchmark using a number of different compil-
ers and languages.

Compiler Language Time (s) Time (s)

(no checks)
Timber Java 34.8 24.0
Timber Seq. Spar/Java 24.5 21.4
Timber Par. Spar/Java 37.2 33.2
PGI HPF HPF - 48.1
PGI HPF F77 - 36.3
g++ C++ - 16.3
gee C - 13.0

Figure 2: Sequential execution times of the NAS
FFT benchmark on the DAS distributed supercom-
puter.

To evaluate the sequential performance of the Timber
compiler, the NAS FT benchmark was implemented in C,
C++, Java, and Spar, and the execution time was measured.
This resulted in the execution times shown in Fig. 1.

The programs were executed on a 466 MHz Celeron with
256MB of memory running Linux 2.2.18. The Timber com-
piler and the C and C++ versions used the Gnu C++ 2.95.2
with the options -06 -fomit-frame-pointer.

The C and C++ version only differ in their representation
of complex numbers: in C++ the standard complex class
was used, and in C a gce-specific type __complex__ was used.
The Spar compiler uses the complex class of C++.

In the Spar version, type complex and 3-dimensional ar-
rays are used. In the Java version nested arrays are used,
and complex numbers are represented by pairs of doubles,
stored in adjacent elements of the array. The difference be-
tween the Java and Spar/Java implementations is caused by
the use of nested arrays instead of flat arrays. The difference
between the Spar/Java and the g++ version is caused by the
different representation of Spar/Java arrays: as a pointer to
an array descriptor; with a pointer to a block of elements
as one of the fields. In contrast, in the C and C++ versions
arrays are represented by just a pointer to a block of ele-
ments. The difference between the g++ and gcc versions is
caused by the use of the standard complex class respectively
the __complex__ class.

8.2 Parallel results

All parallel measurements were done on the DAS dis-
tributed supercomputer [8, 4]. Each node has a 200 Mhz
Pentium Pro; 64 MB RAM; 2.5 GByte local disk; and a
Myrinet interface, and runs Linux. For sequential programs
a single node on a single cluster was used; for parallel pro-
grams multiple nodes on a single cluster were used. In all
cases, the Gnu C++ compiler version 2.95.2 was used as

100 [—ry — proc. Spar Spar Fortran HPF

: SH'faFr i unchecked ~ /MPI
Spar (no checks) ------ 1 38.3 32.7 48.3 56.9
. Fortran/MPl & 2 22,6 20.6 26.2 29.4
> 3 170 15.5 21.4
E 4 136 12.6 134 149
§ 10f 1 8§ 76 7.2 68 7.8
3 : 12 5.1 4.8 5.8
: 16 4.2 3.8 34 39
20 3.7 3.5 3.8
: 24 34 3.2 3.7
. 28 3.0 2.9 3.6
o 0 100 32 27 2.5 17 21

Number of processors

Figure 3: Parallel execution times of the NAS FFT benchmark. All execution times are in seconds.

backend.

As reference, the original Fortran/MPI version, and a
HPF version were used. Both were compiled with the Port-
land Group HPF compiler version 3.1, using the same MPI
library as the Spar version.

For comparison with the sequential results in the previous
section, and for comparison between the implementations
available on this platform, the sequential execution times for
HPF, Fortran 77, Spar, and Java were measured, see Fig. 2.
For the overlapping cases, the results are comparable to the
results of the previous section. The parallel Spar/Java ver-
sion contains an extra matrix transposition that is essential
for parallel execution, but slows down sequential execution.

For parallel execution the results are as shown in Fig. 3.
In most cases the Spar results compare favorably with those
for Fortran/MPI and HPF. For fast runs secondary effects
become significant, such as initialization and setup times.

9. SPAR AND JVM

Since we extend Java, and since the Java Virtual Machine
uses an instruction set that has specifically been designed
for Java, in principle the language extensions of Spar require
the JVM instruction set to be extended. However, since ex-
tending the instruction set would cause problems with exist-
ing JVM implementations there is a great reluctance in the
Java community to any extensions. Moreover, only a limited
number of bytecodes is available for extensions, which adds
to the reluctance to use any of the remaining bytecodes. To-
gether these arguments make it unrealistic to assume that
we can add bytecodes, and it is therefore useful to consider
alternative solutions.

The simplest solution is not to use the JVM at all, but to
use a static compiler that directly generates machine code.
A disadvantage of this solution is that we loose the ability to
freely exchange compiled code between different platforms.
We consider this disadvantage less significant for scientific
programs, since in this community it is reasonable to as-
sume that a Spar/Java compiler for the each specific target
platform is easily available.

Another restriction of our reference Spar/Java compiler
is that it does not support dynamic class loading, but this
restriction could be lifted without using JVM bytecode. The
main reason for the restriction is that the compiler does

not support separate compilation. If available, the native
support for dynamic class loading that is available on many
platforms could be used.

Although we do not advocate this approach, most con-
structs in our set of language extensions could be repre-
sented in JVM bytecode, although with some restrictions
and other disadvantages. Philippsen and Giinthner [18] de-
scribe a scheme to translate all uses of complex numbers to
traditional Java, and hence to bytecode. In their approach
complex numbers are split into separate variables for the
real and imaginary part. This leaves two problematic cases:
complex numbers as return values of functions, and arrays
of complex numbers. Both require more work, but are also
handled. The approach could be generalized to support tu-
ples.

Uses of multi-dimensional arrays could be translated to
use a set of pre-defined classes. See §10 for a discussion of
these sets.

Parameterized types as described in this paper cannot be
translated directly to bytecode. They would require either
an extension of the JVM bytecode, or the generation of
a separate file for each instantiation of the parameterized
class. Since the number of possible instantiations is not
bounded (if nothing else, the number of parameters is un-
bounded), instantiations would have to be created dynami-
cally, which is not an attractive solution.

10. RELATED WORK

Many of the new language constructs in Spar/Java resem-
ble constructs in existing languages, although we are not
aware of a single language that provides all of them. The
most obvious relations are with Fortran and HPF (multi-
dimensional arrays, complex numbers, and data distribu-
tions), with functional languages such as Haskell and ML
(tuples), and with C++ (parameterized types). Parameter-
ized types were also inspired by one of our previous projects,
Tm [21, 20]. Also, we have been careful to adhere to existing
Java language design principles as much as possible for our
language extensions.

In the Ninja project [1, 3] a compiler has been developed
for pure Java. To provide support for array operations,
a set of ‘special’ classes is defined that represent multi-
dimensional arrays and complex numbers. These classes

can be handled by all standard Java compilers, but the
Ninja compiler recognizes these special classes, and gener-
ates efficient code for them. However, since access to multi-
dimensional arrays is quite awkward, they are advocating
language extensions for at least multi-dimensional array ac-
cess. Based on this work, a proposal has been made through
the Java Community Process to add multi-dimensional ar-
rays to Java [13].

Philippsen and Giinthner [18] propose to add a complex
type to Java in a way that is very similar to ours. Instead
of our imaginary floating point suffix ‘i’ they use a new
keyword ‘I’ that represents /—1. Our approach is more
compact and does not require a new keyword.

A number of Java packages for linear algebra have been
proposed, see for example JAMA [12]. These packages often
also introduce multi-dimensional arrays, but usually only
in a restricted form. For example, JAMA introduces two-
dimensional arrays (matrices) of double.

These proposals have as drawback that they impose re-
strictions on the element type and rank of the supported
arrays. Moreover, the notation of array types and array ac-
cess is quite awkward. For example, the Java Community
proposal for multi-dimensional arrays contains the following
function:

void matmul(doubleArray2D a, doubleArray2D b,
doubleArray2D c)
{
int m = a.size(0);
int n = a.size(1);
int p = b.size(1);

for(int i=0; i<m; i++){
for(int j=0; j<p; j++){
c.set(i,j,0);
for(int k=0; k<m; k++)
c.set(i,j,c.get(i,j)+
a.get(i,k)*b.get(k,j));
T
T
}

Compared to this the Spar version is more compact and
readable:

void matmul(double a[*,*], double b[*,*],
double c[*,%])

{
int m = a.GetSize(0);
int n = a.GetSize(1);
int p = b.GetSize(1);
for(i :- 0:m,j :- 0:p){
cli,jl = 0;
for(k := 0:m)
cli,jl += ali,k]*blk,jl;
b
}

Titanium [31] resembles Spar/Java in the sense that it
also provides a set of language extensions to develop Java
into a language for scientific computations. It provides sup-
port for multi-dimensional arrays similar to Spar. Although
is provides a foreach statement similar to that in Spar,
this statement is not intended for parallelization. Instead,
they provide explicit process-based parallelization with vir-
tual shared memory.

See §4.1 for a discussion of related work on parameterized

types.

11. CONCLUSIONS

In this paper we have shown Spar, a set of language exten-
sions that improve the expressiveness of Java for scientific
computations. They allow operations on multi-dimensional
arrays to be expressed more naturally, and to be imple-
mented more efficiently, including parallel operations. The
language extensions also allow the construction of special-
ized array representations, such as symmetric, block, and
sparse matrices.

Language extensions have been designed to be useful in-
dependent of their original purpose. In particular parame-
terized classes an tuples are generally useful, even beyond
scientific computation.

12. FUTURE WORK

As stated in the introduction, we intent to provide a pro-
gramming language that is comparable to Fortran in expres-
siveness for scientific computations. When we compare our
current language with Fortran, we think that only one signif-
icant feature of Fortran 90 still is missing: array statements.
This construct allows manipulations on entire arrays to be
expressed as single statements, by selecting and manipulat-
ing ranges of array elements. For example, the following
statement shifts the elements of an array left (we assume
array a has n elements, also note that Fortran arrays start
at element 1, so in this example element a[n] is the last
element in the array):

a[1:n-1] = a[2:n];

A nice side-effect is that the compiler can often easily dis-
cover that no array bounds are violated, and eliminate bounds
checking.

We would like to support array ranges of this form, but
this will require some language design work.

Other constructs that we would like to add are assertions
as proposed in the Java community process [5]; and const
declarations similar to C++. Note that Java already reserves
the keyword const, but it is currently not used.

Both constructs improve the expressiveness of the lan-
guage, and help the compiler in generating more efficient
code.

13. ACKNOWLEDGEMENTS

We would like to thank the participants of Dagstuhl Sem-
inar 00451, “Effective Implementation of Object-Oriented
Programming Languages”, for their constructive and inspir-
ing remarks on an early version of this paper.

14. REFERENCES

[1] Ninja web site. www.research.ibm.com/ninja.

[2] Class com.isml.math.complex. webpage.
www.vni.com/corner/garage/grande/complex.htm.

[3] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E.
Moreira. High performance numerical computing in
Java: Language and compiler issues. In Proc. of the
12’th Workshop on Language and Compilers for
Parallel Computers, Aug. 1999.

[4] H. Bal et al. The distributed ASCI supercomputer
project. ACM SIG, Operating System Review,
34(4):76-96, October 2000.

[5] J. Bloch. JSR 000041 — a simple assertion facility.
webpage, 2000. java.sun.com/aboutJava/-
communityprocess/jsr/jsr_041_asrt.html.

[6] G. Bracha. JSR 000014 — add generic types to the Java
programming language. webpage, 2000. java.sun.com/-
aboutJava/communityprocess/jsr/jsr_014_gener.html.

[7] G. Bracha, M. Odersky, D. Stoutamire, and
P. Wadler. GJ specification. Technical report, Bell
Labs, May 1998. www.cs.bell-labs.com/who/wadler /-
pizza/gj/Documents/index.html.

[8] DAS website. www.asci.tudelft.nl/das/das.shtml.

[9] P. Dechering, J. Trescher, J. d. Vreught, and H. Sips.
V-cal: a calculus for the compilation of data parallel
languages. In C.-H. H. et. al., editor, 8th Intl.
Workshop, Languages and Compilers for Parallel
Computing, number 1033 in LNCS, pages 388-395,
Columbus, Ohio, USA, Aug. 1995. Springer Verlag.

[10] M. Frumkin, H. Jin, and J. Yan. Implementation of
NAS parallel benchmarks in high performance fortran.
In IPPS, 1999.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition. The Java
Series. Addison-Wesley, Reading, Massachusetts, June
2000.

[12] JAMA: Java matrix package. website.
math.nist.gov/javanumerics/jama.

[13] J. E. Moreira. JSR 000083 — Java multiarray package.
webpage, 2000. java.sun.com/aboutJava/-
communityprocess/jsr/jsr_083_multiarray.html.

[14] J. E. Moreira, S. P. Midkiff, M. Gupta, P. V. Artigas,
M. Snir, and R. D. Lawrence. Java programming for
high performance numerical computing. IBM Systems
Journal, 39(1):21-56, 2000.

[15] A. C. Myers, J. A. Bank, and B. Liskov.
Parameterized types for Java. In Proceedings of the
24th AMD Symposium on Principles of Programming
Languages, pages 132-145, Jan. 1997.

[16] NAS parallel benchmarks website.
www.nas.nasa.gov/Software/NPB.

[17] S. Niemeijer. Parallel expressiveness of the Spar
programming language. PDS Technical Report
PDS-2000-006, Delft University of Technology, May
2000.
www.pds.twi.tudelft.nl/reports/2000/PDS-2000-006.

[18] M. Philippsen and E. Giinthner. Complex numbers for
Java. Concurrency: Practice and Ezperience,
12(6):477-491, May 2000.

[19] C. v. Reeuwijk. Timber download site.
www.pds.twi.tudelft.nl/timber/downloading.html.

[20] C. v. Reeuwijk. Tm website.
www.pds.twi.tudelft.nl/~reeuwijk /software/Tm.

[21] C. v. Reeuwijk. Tm: a code generator for recursive
data structures. Software — Practice and Ezperience,
22(10):899-908, October 1992.

[22] C. v. Reeuwijk. Spar 1.5 language specification. PDS
Technical Report PDS-2001-003, Delft University of
Technology, Oct. 2001.
www.pds.twi.tudelft.nl/reports/2001 /PDS-2001-003.

[23] C. v. Reeuwijk, A. v. Gemund, and H. Sips. Spar: A
programming language for semi-automatic
compilation of parallel programs. Concurrency —

[24]

[25]

[26]

(27]

28]

[29]

(30]

31]

Practice and Ezperience, 11(9):1193-1205, Nov. 1997.
C. v. Reeuwijk, F. Kuijlman, H. Sips, and

S. Niemeijer. Data-parallel programming in
Spar/Java. PDS Technical Report PDS-2000-005,
Delft University of Technology, May 2000.
www.pds.twi.tudelft.nl/reports/2000/PDS-2000-005.
C. v. Reeuwijk, F. Kuijlman, H. Sips, and

S. Niemeijer. Data-parallel programming in
Spar/Java. In Proceedings of the Second Annual
Workshop on Java for High-Performance Computing,
pages 51-66, May 2000.

T. Riihl, H. Bal, R. Bhoudjang, K. Langendoen, and
G. Benson. Experience with a portability layer for
implementing parallel programming systems. In Int.
Conf. on Parallel and Distributed Processing
Techniques and Applications, pages 1477-1488, Aug.
1996.

T. Riihl and R. Bhoudjang. The Panda 4.0 interface
document. Technical report, Vrije Universiteit,
Amsterdam, Jan. 1999.

H. Sowizral, K. Rushforth, and M. Deering. The Java
3D API Specification. The Java Series.
Addison-Wesley, 1995.

K. Thorup. Genericity in Java with virtual types. In
European Conference on Object-Oriented
Programming, LNCS 1241, pages 444-471. Springer
Verlag, 1997.

G. Toth. The LASY preprocessor and its application
to general multi-dimensional codes. Journal of
Computational Physics, 138:981-990, 1997.

K. Yelick, G. Pike, C. Miyamoto, B. Liblit,

A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. C., and A. Aiken. Titanium: a high-performance
Java dialect. In ACM Workshop on Java for
High-Performance Network Computing, pages 1-13,
Feb. 1998.

