Spar: a programming language for semi-automatic
compilation of parallel programs

Kees van Reeuwijk, Arjan J.C. van Gemund, Henk J. Sips
August 4, 1997

Abstract

We present Spar, a programming language for semi-automatic parallel programming, in
particular for the programming of array-based applications. The language has been designed
as part of the Automap project, in which a compiler and run-time system are being developed
for distributed-memory systems. As suggested by its name, Automap aims at completely auto-
matic code and data mapping at either compile-time or run-time. This relieves the programmer
of a difficult task, and makes Spar programs completely portable.

Apart from a few minor modifications, Spar is a superset of Java. This provides Spar with
a modern, solid, language as basis, and makes Spar more accessible. Spar extends Java with
constructs for parallel programming, extensive support for array manipulation, and a number
of other powerful language extensions.

1 Introduction

Although parallel computers are well-established, they have never become very popular. An im-
portant reason for this is that they are considerably more difficult to program than sequential
computers. Therefore, parallel computers are currently only used for applications where the large
additional effort and expense can be justified. There is an important class of applications, how-
ever, where the use of a parallel computer could also be justified, if only programming such a
computer would be simpler. This means that the programmer should be provided with a program-
ming language and compiler that supports automatic or semi-automatic parallelization. This is
likely to incur some cost, in the same way that high-level languages incur some cost compared to
hand-written assembly programs, but this is often an acceptable tradeoff for the shorter program
development time. An advantage of semi-automatic parallelization is that it is more likely to be
portable, since the details of program optimization for a given machine can be handled by the
compiler. Again, there is a clear analogy with high-level programming languages.

Obviously, fully automatic parallelization is the most convenient solution, so the sequential
programming model would be the most attractive [1, 27]. However, the nature of the data de-
pendencies associated with most sequential programs still prohibits fully automatic parallelization.
Moreover, a sequential program is often overspecified, since dependencies can be created that are
not essential to the problem.

At the other extreme, the explicit parallelism in languages like Occam [18], CC++ [5], and
Java [13]; and communication libraries like MPI [21, 4], guarantees that the parallelism in the
program is exposed, but there is a severe risk of introducing unintended non-determinism and
non-portability, since the code and data mappings are specified by the user.

A compromise was found in data parallel languages [15, 16], where the user only has to provide
mapping annotations, but in practice this still means that the user must have detailed understand-
ing of the complex interplay between program and target machine. Although highly efficient code
can be generated [7, 24], the limited expressiveness of the data parallel model has already led to a
number of extensions to include more explicit parallelism [6, 14, 11].

Within the Automap project [25] another compromise is sought. Using parallel constructs, the
user divides the program into a number of medium-grain tasks, and the compiler will automatically
map the code and data onto a distributed-memory system. The program is still highly portable, yet

the performance of the resulting code will be high. To simplify the cost estimation and scheduling
mechanisms required for automatic mapping, the Automap project currently restricts programs
to a class conforming to the SPC [22] (Series-Parallel Contention) programming model. Clearly,
there will be loss of parallelism due to this restriction, but this has been conjectured to be small.
Compelling evidence in support of this claim is provided in [10]. Nevertheless, future versions of
the Spar compiler may lift this restriction.

To support the SPC programming model, Spar provides the foreach loop construct, that
specifies that the iteration order is immaterial. After some analysis, the compiler can transform
most foreach loops into explicit parallel loops in SPC form. This intermediate form is then used
for automatic task mapping. The same loop construct has been proposed by Wolfe [26].

The language constructs that we need for the Automap project could be embedded in many
languages. Although we have considered ‘established’ languages such as Fortran, C, and C++,
most of them would require too much implementation effort, or would not easily lend themselves
to extension. An alternative, a newly defined language, would not be attractive to potential users,
and would require considerable language design effort. We finally decided on Java as the core
language, since it is relatively easy to implement and extend. The suitability of Java as a (core)
language for scientific computation has received growing attention recently [12]. Our first intention
was to use Java only as the starting point, to modify the language to support the constructs that
we would need, and leave out the constructs that could not be supported. During the design it has
become clear that our constructs could be added without changing Java, and that we could support
almost all of Java. As a result, Spar is a superset of Java, apart from a few minor modifications.
Interestingly, in [19] a similar history is sketched. For the moment, Spar does not support Java
threads, since these do not fit in the SPC form that we currently support.

The parallel language extensions of Spar are determined by the needs of the Automap project,
and by the desire to make the formulation of parallel programs as reliable as possible. The array
manipulation constructs are inspired by Fortran 90 [17] and Booster [20]. Spar macros and pa-
rameterized classes (see Sections 2.7 and 2.4) are inspired by functional or other non-imperative
languages, by the language theory of Boute [2] and by the FORFUN project [23]. Spar is not the
first language to add parameterized types to Java; for example, in Pizza [19] parametric polymor-
phism, higher-order functions, and algebraic types are added to Java. Parametric types are also
mentioned in [13], although no details are given.

The paper is organized as follows. In Section 2 we present the Spar programming language as far
as the extensions to Java are concerned. Due to space limitations we can not include a program to
demonstrate the language features. Instead, we demonstrate the use of all new language constructs
in small program fragments. We briefly describe the compilation of Spar in Section 3. In Section
4 we draw some conclusions.

2 The Spar programming language

Since most of the language constructs are inherited from Java, only the extensions and the (rare)
modifications are described.

Obviously, Spar provides extensions to support parallel programming, in the form of the each
and foreach language constructs.

Since Spar is designed to support array-based computations, it has more extensive support
for arrays than Java. Spar generalizes Java arrays to multi-dimensional arrays that can be grown
and shrunk during their life-time. Array elements can be manipulated in the large with array
statements.

Another important goal in the development of Spar was to provide support for sparse matrices.
Since there are more sparse matrix representations that can be reasonably incorporated in any
programming language, no attempt has been made to support sparse matrices directly. Instead,
the language allows easy definition of new matrix representations. In particular, any class that
implements the Array interface enjoys the same privileged notation as ordinary arrays.

2.1 Parallel programming

Even if we restrict ourselves to the SPC programming model, there is a range of possible language
constructs to express parallelism. They mainly differ in the tradeoff between ease of use for the
programmer and ease of use for the compiler.

At one extreme there are constructs with clear semantics and which are deterministic in the
sense that parallel or sequential execution yields the same results. An example is the forall
construct of HPF, which can have array statements in its loop body. In Dechering et al. [8] it is
shown how this construct can be generalized to cover arbitrary loop bodies. The main problem in
such a general construct is that it heavily relies on copy-in/copy-out semantics. In practice this
sometimes leads to unexpected behavior.

At the other extreme there are explicitly parallel loops, e.g. HPF DO loops that are annotated as
independent, or the parfor of CC++; which specify that the iterations can be executed in parallel
with no consideration for the interactions. This does not require any analysis by the compiler, but
the construct has inconvenient semantics for programmer, because parallel and sequential execution
may yield surprisingly different results.

In Spar we provide the foreach construct, which specifies that the iterations can be executed
in arbitrary order, but that each iteration is to be executed sequentially. This model is fairly easy
to understand for the programmer, and requires less complicated analysis by the compiler than
analyzing strict sequential for loops. In principle the semantics are the same for sequential or
parallel execution. Moreover, reduction operations can be formulated quite elegantly, which is not
possible with the forall or with explicitly parallel loops.

2.1.1 The each statement

Given a block such as:

each {
s1;
s2;
}

The statements s1 and s2 are executed in arbitrary order. It is guaranteed, even for compound
statements, that every statement is executed as one state transition.

Thus, the compiler will choose one of the execution orders “s1; s2;”, or “s2; si1;”, even if
the statements are compound.

2.1.2 The foreach statement

The foreach statement is a parameterized version of the each statement of the previous section.
For example,

foreach(i=0:n){
ali].init();
}

invokes the init method of n members of array a. As for the each statement, it is guaranteed
that every iteration instance of a foreach statement is executed as one state transition. Thus, an
iteration can only influences other iterations when it has been completed.

To allow easier analysis, the foreach has a range syntax rather than the traditional while-like
syntax of the for statement of Java. For reasons of orthogonality Spar also allows the range syntax
in the for statement, and the while-like syntax in the foreach statement.

The foreach range can also be described as a vector range (see Section 2.3 for an explanation
of vectors). For example, a two-dimensional array b would be initialized completely by:

foreach(i=[0,0]:getSize(b)){
(b i).init();
}

As a further refinement, the range syntax allows masks. For example, if we wanted to initialize
only the non-null elements of an array of objects, we could write:

foreach(i=[0,0]:getSize(b), b i != null){
(b i) .init);
}

2.2 Basic language constructs

Spar supports all the primitive types of Java (int, float, etc.). It also supports the new primitive
type complex, since complex numbers are important in many numerical programs.

2.3 Vectors

Spar has extensive support for arrays, but this support is designed for bulk operations on variable-
length arrays. There are circumstances where a more light-weight construct is appropriate. For
this reason Spar provides vectors. Vectors are important as indices into multi-dimensional arrays,
in particular in the parameterized classes that implement custom array representations.

A vector type is written as the name of an element type, followed by a Cartesian exponentiation
operator (‘~’), followed by a constant expression. For example, the following are valid vector
declarations:

int~3 x;
double”2 y;

Like primitive types, vectors do not have to be created explicitly, and like primitive types, they
are passed by value. A vector of length 1 is not the same as its element.

Provided that the operations are defined on the elements, Spar allows vector assignment, equal-
ity comparison, addition, subtraction, and multiplication. Vector expressions can be written as a
list of values surrounded by square brackets. The code below demonstrates most of these opera-
tions.

int~3 x;

x[0] = 1; // Fill elements of the vector
x[1] = 2;

x[3] = 3;

x = [1,2,3]; // This is equivalent to the above

int"3 y = x; // Declaration with initialization
y += [1,0,0]; // Vector addition

y = y-x; // Vector subtraction

y *x= 2; // Element-wise multiplication

2.4 Class objects

Spar generalizes Java classes by allowing parameterization. For example, the Java tutorial [3] shows
a stack class that can hold elements of arbitrary type. If we wanted to restrict the stack to elements
of a given type, we could implement a separate class for each type, but it is much more useful to
implement a generic, parameterized, stack. In Spar this is possible as follows:

class TypedStack(type t) {
static final int STACK_EMPTY = -1;
t[] stackelements;
int topelement = STACK_EMPTY;

void push(t e){
stackelements[++topelement] = e;

}

t pop() {
return stackelements[topelement--];

}
boolean isEmpty(){

return (topelement == STACK_EMPTY);
}
}

An instance of this class could be used as follows:
TypedStack(char) s = new TypedStack(char) ();
s.push(’a’);

s.push(’b’);
char ¢ = s.pop(Q);

Parameterization is not restricted to type parameters. In Spar, parameterized classes are always
expanded at compile-time.

2.5 Interfaces
Just like classes, Spar interfaces can be parameterized:

interface Collection(type t){
void add(t obj);
void delete(t obj);
t find(t obj);
int currentCount();

}
A class can inherit this interface as follows:

Class Bag(type t) implements Collection(t) {

};

An important use of parameterized interfaces is the Array interface, see Section 2.6.5.

2.6 Arrays
2.6.1 Array types

An array type is written as the name of an element type, followed by a number of abstract shape
specifications. For example:

int[*] v; // A 1-dimensional array
int[*,*] A; // A 2-dimensional array

For compatibility with Java, Spar also allows Java-style declarations of one-dimensional arrays:
int[] n; // A 1-dimensional array

This is a special case.
Here are some examples of declarations of array variables that create array objects:

int al[*] = new int[4];

short b[*,*] = new short[6,8];

int sq[*] = { 1, 4, 9, 16, 25, 36 };

real ident[*,*] = {{1,0,0}, {0,1,0}, {0,0,1}};
real vv[*][*] = {{1,0,0}, {0,1,0}, {0,0,1}};

String[] aos = { "array", "of", "string" };

Note that ident and vv have the same initialization expression, but they are not equivalent. The
first is a two-dimensional array, the second is a one-dimensional array of one-dimensional arrays.
A component of an array is accessed by an expression that consists of an array reference followed
by an int vector expression, as in: A[i,j]. All arrays start at element 0. A one-dimensional array
with length n can be indexed by the integers 0 to n — 1.
For example, the following assigns 2 to array element [2,3] of array A.

int[*,*] A = new int[9,9]; // A 2-dim array
Al2,3] = 2; // An array access

This looks very similar to array access in other languages, but in the case of Spar this is a special
case of a more general access construct, where arbitrary vector expressions can be used to access
an array. Since any vector expression can be used, very powerful access expressions are possible.
This is demonstrated in the following code:

int[*,*] A = new int[9,9]; // A 2-dim array

int"2 v = [1,1]; // A vector of 2 elm.
Av=3; // A[1,1] = 3
A 3xv = 4; // A[3,3] = 4

As much as possible, array accesses are checked for bounds violations at compile time. If
the array access cannot be checked at compile time, an index that is out of bounds causes an
IndexOutOfBoundsException to be thrown.

2.6.2 Elastic arrays

Spar arrays that implement the ElasticArray interface can be grown and shrunk during their lifetime.
For every array an int vector is maintained that contains the current size of the array in each of
its dimensions, and an int is maintained that contains the room of the array: the current number
of elements in the memory block of the array. Obviously, the room of an array is always large
enough to hold the current array.

The size vector of an array is available through the method getSize, and can be set through
the method setSize. The latter causes the array to grow or shrink; the room of the array will be
enlarged if necessary.

The room of an array is available through the method getRoom, and can be set through the
methods setRoom and fitRoom. The method setRoom will force the array to be grown to at least
the given room or volume; it will never shrink the room. The method fitRoom reduces the room
of the array to the current size of the array. At any time, even immediately after an invocation of
fitRoom, the actual room of the array may be larger than requested.

2.6.3 Array expressions

An array expression is a shorthand notation for the construction of a (partial) copy of an array.
For example, the following code will first construct an array a, and then construct a copy of the
first row of a, and assign it to v.

int[*,*] a = {{0,1,2},{3,4,5},{6,7,8}};
int[*] v = a[0,0:a.getSize () [11];

Note that v is a copy, so subsequent assignments to elements of v are not visible in a. Contrary
to array range notations in many other languages, the top of the specified range is the first element
not to be included.

The usual range shorthands apply: if no start of the range is given, 0 is assumed, and if no
end of the range is given, the size in that dimension is assumed. Thus the declaration of v in the
previous code fragment could be written as:

int[*] v = a[0,:];

2.6.4 Array statements

Array statements are a shorthand notation for a foreach statement that is executed for all elements
of a selected range. For example, the code fragment

Block[*,*] a = new Block[5,7];
al:,:].initQ);

will invoke the method init on all elements of Block array a. Since this is equivalent to a foreach
statement, the init method of each of the array elements is not invoked in a prescribed order.
Similarly, array assignments are a shorthand for repeated assignments. For example:

int[*,*] a = new int[5,7];

al:,:] = 0;

will zero the entire array a.
The expression at the right-hand side of the assignment will be evaluated only once. Thus,

int ix = 0;
int[*,*] a = new int[5,7];

al:,:] = ix++;

will again zero the entire array a, and will leave ix with the value 1.

Last but not least, array assignments may contain an array at the right-hand side, instead of a
single element. In that case every iteration of the foreach will use the implicit iteration vector as
index for every assignment.

For example:

int[*,*] a = new int[5,7];

int[*,*] b = new int a.getSize();
bl:,:]1 = 1;
al:,:] = b;

will copy b into a. The last statement could also be written as:
al:,:] = bl:,:1;

but a naive compiler would first create a copy of b, and leave it for the garbage collector.

Array statements never change the size of the array they work on. Any access that is out of
bounds is detected at compile-time or run-time, and causes an error message or an IndexQOutOf-
BoundsException exception.

2.6.5 The Array and ElasticArray interfaces

To support sparse matrices and other alternative matrix implementations, Spar allows any class
that implements the Array interface to use the array access syntax.
The Array interface is defined as follows:

interface Array(type t, int n)
{
t getElement(int"n index)
throws IndexOutOfBoundsException;
void storeElement(int"n index, t elm)
throws IndexOutOfBoundsException,
ArrayStoreException;
int"n getSize();

If a class wants to allow growing and shrinking of its arrays, it should implement the ElasticArray
interface:

interface ElasticArray(type t, int n)
extends Array(t, n)
{
void setSize(int"n sz)
throws NegativeArraySizeException;
int getRoom();
void setRoom(int rm);
void setRoom(int"n rm);
void fitRoom() ;
}

For example, the following class defines a ‘view’ on the diagonal of a two-dimensional array:

class DiagonalView(type t) implements Array(t,1)
{
Array(t, 2) ref;

DiagonalView(Array(t, 2) a){ ref = a; }
t getElement(int~1 ix){
return ref[ix[0],ix[0]];
}
void storeElement(int~1 ix, t elm) {
ref[ix[0],ix[0]] = elm;
}
int~1 getSize() {
int"2 dims = ref.getSize();
return [Math.min(dims[0], dims[1])];

}

This class can now be used as follows:

int[*,*] a = new double[5,5];
DiagonalView(double) v = DiagonalView(a);
al:,:] = 0;

v[:] = 1;

This will construct and fill ‘a’ with the identity matrix (1 on the diagonal, O elsewhere).
As another example, the following class implements a transpose view on an array of arbitrary
size.

class TransposeView(type t, int n)
implements Array(t, n)

{
Array(t, n) ref;

TransposeView(Array(t, n) a){ ref = a; }
t getElement(int"n ix){
return ref revVector(n, ix);
}
void storeElement(int”"n ix, t elm){
ref revVector(n, ix) = elm;
}
int"n getSize(){
return revVector(n, ref.getSize());

}

static int"n revVector(int n, int"n v){
int ix;
int"n res;

for(ix=0; ix<n; ix++){
res[(n-ix)-1] = v[ix];
}

return res;

}

Note that this class even works for 0-dimensional and 1-dimensional arrays. Also note that since this
class allows a view on an arbitrary Array class it is possible to compose views. This is demonstrated
below, where two transpose views are composed.

This could be used as follows:

int[*,*] a = new double[5,5];
TransposeView(double) v = TransposeView(a);
TransposeView(double) w = TransposeView(v);

al:,:]1 = 0;
v[:,0] = 1;
wl:,0] = 2;

This results in a matrix ‘a’ where all elements are set to 0, except that the first column (apart from
a[0,0]) is set to 1 through the transpose view ‘v‘ on ‘a’, and the first row is set to 2 through the
transpose view ‘w’ on ‘v’. Note that since ‘w’ is a transpose view on a transpose view, it is in effect
an identity view.

2.7 Macros

Spar provides macros for two different reasons: (a) to allow the abstraction of simple constructs
without paying the cost of a function call, and (b) to allow type abstraction, so that part of the
functionality of C++ templates can be provided.

A macro is similar to an ordinary class, method, or constructor, but it is declared to be a macro
with the macro keyword. For example:

class Stats {
long sum;
int n;

macro Stats() { sum = 0; n = 0; }
macro void update(int val) {
n++;
sum += val;
}
macro float average() {
return ((float) val)/((float) n);
}

}

Macro methods are very similar to ordinary methods, but the compiler is required to expand them
at compile time. Moreover, macro methods can have type parameters, which is not allowed in
ordinary methods.

For example, classes such as the DiagonalView and TransposeView classes shown in the previous
section usually declare most of their methods as macros for increased efficiency.

3 Compiling Spar

The compilation of Spar is very different from traditional Java compilation. Whereas Java code is
traditionally compiled to a separate . class file for each Java class, all Spar code, including imported
code, is collected in a single program file. All macros and parameterized classes are expanded, all
methods are rewritten to stand-alone functions, etc. The resulting program is represented in our
intermediate language Vnus [9]. In the Vnus representation, most language constructs described
in this paper are rewritten; only multi-dimensional arrays and the each and foreach constructs
remain. Subsequent engines will rewrite the each and foreach, map the tasks, and will generate
C++ code with explicit parallelization and communication.

4 Conclusion

We have presented Spar, a programming language for semi-automatic parallel programming, in
particular for the programming of array-based applications. The language has been developed as
part of the Automap project, in which a compiler and run-time system are being developed for
convenient and portable programming of parallel distributed-memory computers, in particular for
array-based problems.

Apart from a few minor modifications, Spar is a superset of Java. This provides Spar with a
modern, solid language as basis, and makes Spar more accessible. Spar extends Java with con-
structs for parallel programming, extensive support for array manipulation, and a number of other
powerful language extensions. Although Java was designed for an entirely different purpose, it
was surprisingly easy to embed our language constructs. The resulting programming language,
Spar, retains the elegance of Java, and provides the programmer with sufficient expressive power
to encode parallel array-based algorithms conveniently.

The language design for Spar has been completed, but an implementation is not yet available. A
first prototype is expected shortly. A fully working parallelizing compiler for Vnus, the intermediate
language in the Automap project, is already available.

Acknowledgements

The Spar language design has greatly benefitted from the comments of other members of the
Automap team: Leo Breebaart, Paul Dechering, Frits Kuijlman, and Hai-Xian Lin.

References

[1] Aart J.C. Bik and Dennis B. Gannon. Automatically exploiting implicit parallelism in Java.
Concurrency, Practice and Ezperience, 9(6):579-619, June 1997.

[2] R. T. Boute. Funmath: towards a general formalism for system description in engineering
applications. In P. P. Silvester, editor, Advances in FElectrical Engineering Software, pages
215-226. Computational Mechanics Publications, Southampton, and Springer-Verlag, Berlin,
August 1990.

[3] Mary Campione and Kathy Walrath. The Java Tutorial. The Java Series. Addison-Wesley,
Reading, Massachusetts, August 1996.

[4] Bryan Carpenter, Yuh-Jye Chang, Geoffrey Fox, Donald Leskiw, and Xiaoming Li. Experi-
ments with “HPJava”. Concurrency, Practice and Experience, 9(6):633-648, June 1997.

[5] K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object oriented
programming notation. Technical report, California Institue of Technology, September 1992.

[6] B. Chapman, P. Mehrotra, J. Van Rosendale, and H. Zima. A software architecture for
multidisciplinary applications: Integrating task and data parallelism. In Proc. Fifth Workshop
on Compilers for Parallel Computers, pages 454-466, Malaga, June 1995.

10

[7] S. Chatterjee, J. R. Gilbert, F. J.E. Long, R. Schreiber, and Shang-Hua Teng. Generating
local addresses and communication sets for data-parallel programs. Journal of Parallel and
Distributed Computing, 26(1):72-84, April 1995.

[8] Paul Dechering, Leo Breebaart, Frits Kuijlman, and Kees van Reeuwijk. Semantics and imple-
mentations of a generalized forall statement for parallel languages. In International Parallel
Processing Symposium, pages 542-548, Geneva, April 1997. IEEE.

[9] P.F.G. Dechering, J.A. Trescher, J.P.M. de Vreught, and H.J. Sips. V-cal: a calculus for
the compilation of data parallel languages. In C.-H. Huang, P. Sadayappan, U. Bannerjee,
D. Gelernter, A. Nicolau, and D. Padua, editors, 8th Intl. Workship, Languages and Compilers
for Parallel Computing, number 1033 in LNCS, pages 388-395, Columbus, Ohio, USA, August
1995. Springer Verlag.

[10] A. Gonzalez Escribano, Valentin Cardefioso Payo, and A.J.C. van Gemund. On the loss of
parallelism by imposing synchronization structure. In Proc. 1st EURO-PDS Int’l Conf. on
Parallel and Distributed Systems, Barcelona, June 1997.

[11] I. Foster. Task parallelism and high-performance languages. IEEE Parallel and Distributed
Technology, pages 27-36, Fall 1994.

[12] Geoffrey C. Fox and Wojtek Furmanski. Java for parallel computing and as a general language
for scientific and engineering simulation and modelling. Concurrency, Practice and Ezperience,
9(6):415-425, June 1997.

[13] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The Java Series.
Addison-Wesley, Reading, Massachusetts, August 1996.

[14] Thomas Gross, David R. O’Hallaron, and Jaspal Subhlok. Task parallelism in a high perfor-
mance Fortran framework. IEEFE parallel and distributed technology, pages 16—-26, Fall 1994.

[15] High Performance Fortran Forum. High Performance Fortran Language Specification, 2.0
edition, February 1997.

[16] Susan Flynn Hummel, Ton Ngo, and Harini Srinivasan. SPMD programming in Java. Con-
currency, Practice and Ezperience, 9(6):621-631, June 1997.

[17] ISO/IEC. ISO/IEC 1539 (Fortran 90), second edition, July 1991.

[18] David May. Occam. In IFIP Conference: System Implementation Languages: Experience and
Assessment, Canterbury, September 1984.

[19] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice. In Con-
ference Record of POPL ’97: The 2/th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 146-159, Paris, France, January 1997. ACM.

[20] E.M. Paalvast, H.J. Sips, and L.C. Breebaart. Booster: a high-level language for portable
parallel algorithms. Applied Numerical Mathematics: Transactions of IMACS, 8(2):177-192,
September 1991.

[21] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Refer-
ence. MIT Press, Cambridge, MA., 1996.

[22] A.J.C van Gemund. The importance of synchronization structure in parallel program opti-
mization. In Proc. 11th ACM Int’l Conf. on Supercomputing, Vienna, July 1997. ACM. to be
published.

[23] C. van Reeuwijk. The implementation of a system description language and its semantic
functions. PhD thesis, Delft University of Technology, Department of Electrical Engineering,
Delft, The Netherlands, July 1991.

11

[24] C. van Reeuwijk, W. Denissen, H.J. Sips, and E.M. Paalvast. An implementation framework
for HPF distributed arrays on message-passing parallel computer systems. IEEE Transactions
on Parallel and Distributed Systems, 7(9):897-914, September 1996.

[25] C. van Reeuwijk, H.J. Sips, H.X. Lin, and A.J.C. van Gemund. Automap: A parallel
coordination-base programming system. Tech. Rep. 1-68340-44(1997)04, Delft University of
Technology, April 1997.

[26] M. Wolfe. Doany: Not just another parallel loop. In Uptal Banerjee, David Gelernter, Alex
Nicolau, and David Padua, editors, Proceedings of the 5th International Workshop on Lan-
guages and Compilers for Parallel Computing, Lecture Notes in Computer Science, pages
421-433, New Haven, Connecticut, August 1992. Springer-Verlag.

[27] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1995.

12

