
Rapid and Robust Compiler Construction Using
Template-Based Metacompilation

C. van Reeuwijk

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

email: C.vanReeuwijk@twi.tudelft.nl

Abstract. We have developed Tm, a template-based metacompiler. Given a set
of data-structure definitions and a template, Tm generates files that instantiate the
template for the given data structures. With this process, Tm is able to generate
program code to manipulate these data structures. Since it uses templates, the gen-
erated code is not restricted to a specific programming language: any sufficiently
powerful programming language can be targeted.
Tm has been used for a wide variety of tasks and languages. However, it was
designed to support compiler construction, and most applications have been in
that area.
In this paper we outline Tm, and describe our experiences with using it to con-
struct a static compiler for Java. As we will show, it has significantly accelerated
implementation of the compiler. Almost 75% of its source code is generated by
Tm, allowing us to rapidly implement a much more robust and sophisticated com-
piler than would have been possible otherwise.

1 Introduction

In an earlier paper [1] we described Tm (short for Template Manager), a template code
generator. Given a set of data-structure definitions and a template, Tm generates an out-
put file that is an expansion of the template using the data structure definitions (Fig. 1).

Tm

source code

data−structure definitionssource code template

Fig. 1. Given a source code template file and a set of data-structure definitions, Tm generates a
source code file.

For example, the following definitions could be used to represent connections be-
tween electronic components:

connection = Wire: { nm:string } | Bundle: { l:[connection] };

A connection is either a single wire or a bundle of connections, represented by types
Wire or Bundle respectively. Both are subtypes of connection. A Wire contains
a string field, a Bundle contains a list of connections.

Now consider the following Tm template:

.foreach t ${typelist}
typedef str_$t *$t;
.endforeach

The two lines starting with a dot form a Tm command that iterates over the defined
types, and assigns the current type to variable t. The remaining line is written to the
output in each iteration. The two $t expressions are references to variable t that are
substituted by Tm.

Executing this template using the type definitions shown above results in:

typedef str_Wire *Wire;
typedef str_Bundle *Bundle;
typedef str_connection *connection;

Tm templates are programs for the Tm macro language. When executed, these pro-
grams can generate source code for another programming language. This process is
called metaprogramming, since it is a metalevel above ‘normal’ programming. The ap-
proach that Tm uses is called static metacompilation or template metaprogramming
since it is done at compile time, not at runtime.

Because it uses templates, Tm is neutral with respect to the target language of the
generated files. Various users have written templates for programming languages such
as Miranda, Pascal, C, C++, Lisp, Clean and Java, but also for targets such as Unix
shells, the Unix streaming editor (sed), and configuration files for various programs.
The most common target is the C programming language.

Tm supports file inclusion in its templates, so code can be shared between projects,
and standard templates can be provided for common code. An extensive set of standard
templates have been developed for C, and for many programs the code provided by
these templates is sufficient.

Tm has proved to be very useful in a large variety of projects. To illustrate this, we
will examine the use of Tm and its C templates in the construction of Timber [2, 3],
a parallelizing Spar/Java compiler. Using Tm has had a profound impact on the imple-
mentation of Timber. Nearly 75% of its source code is generated by Tm. Code templates
strongly encourage code reuse, since a code template section is repeatedly expanded,
and entire code templates are re-used between projects. Moreover, code templates can
automate a number of error-prone tasks, such as dependency calculations between node
types. For all these reasons, using Tm has allowed us to implement a far more robust,
powerful and adaptable compiler than otherwise would have been possible.

The source code of the Timber compiler is available for downloading from [4], the
source code of Tm itself is available for downloading from the Tm website [5].

The paper is organized as follows: In Section 2 we describe related work. In Sec-
tions 3 and 4 an overview of Tm is given. In Section 5 the C templates of Tm are de-
scribed. In Section 6 the Timber compiler and the impact of Tm on its implementation
are described, and in Section 7 we draw some conclusions.

2 Metaprogramming languages

In a sense, the most popular metaprogramming language is formed by the directives of
the C/C++ preprocessor. Unfortunately, it is a very weak language without even simple
features such as iteration or string manipulation. Generic macro processors such as the
Unix tool ‘m4’ have also been used for metaprogramming, but such a macro processor
has no knowledge about the data-structure definitions for which code must be generated,
and is therefore not very effective.

For effective metaprogramming, the metaprogramming language must know the
data-structure definitions of a program, and the relation between them. This allows the
metaprogram to generate code that is tailor-made for a specific data structure.

Knowledge about the data-structure definitions can be provided at run time or at
compile time. At run time, the knowledge can be provided through a set of inquiry func-
tions that list the types in a program, list members of a type, etc. Such inquiry functions
are available in languages like Java, Smalltalk, and Python. This approach is called dy-
namic metaprogrammimg. For example, Java associates a java.lang.Class object
with every object in a program. Query methods of the Class object allow the program
to list methods, constructors and fields of the class, and to obtain detailed information
about these methods.

The advantage of dynamic metaprogramming is that the same language is used for
programming and metaprogramming. Thus, the user does not need to learn a new lan-
guage. However, since the metaprogramming is done at run time, is difficult to compile
the output of the metaprogram. The alternative, interpretation, results in slower execu-
tion. Also, dynamic metaprogramming languages are usually not designed for large-
scale metaprogramming, so that extensive templates are cumbersome to implement.
Finally, dynamic metaprogramming is inherently restricted to a single programming
language.

When the knowledge about the data-structure definitions is provided at compile
time, this is called static metaprogramming or static metacompilation. Knowledge about
the data-structure definitions can be extracted from the target language, or can be pro-
vided as definitions in the metaprogramming language. The first approach requires tight
integration with the programming language under it. It is used, for example, in Will-
ink’s Flexible Object Generator [6, 7] (FOG). He replaces the standard preprocessor
of C++ with a much more powerful metacompiler integrated with C++. Unfortunately,
although FOG can access C++ class definitions, it does not allow computations on the
relations between classes. This is a restriction of FOG, not one that is inherent to the
used approach. It is inherent in the approach that it is restricted to a single programming
language.

It is also possible to construct a static metacompiler that is independent of the under-
lying programming language. With this approach, the data-structure definitions are part

of the metalanguage, and metaprograms must generate data-structure definitions for the
target language. This makes the metacompiler fully independent of the target language.
This is the approach used by Tm, although we strictly separate the macrolanguage and
the data-structure definition language.

The same approach is used by AutoGen [8]. It shares many features with Tm, but
was designed for general code construction tasks. In contrast, Tm was designed to gen-
erate manipulation code for data structures, and in particular to assist in compiler con-
struction. AutoGen’s macro language does not have Tm’s rich set of functions and com-
mands to access and manipulate data-structure definitions. Also, it lacks the rich set of
C templates that Tm provides.

3 Tm data-structure definitions

expr = { org:origin } +
VarExpr: { nm:string } |
AddExpr: { l:expr, r:expr } |
SubExpr: { l:expr, r:expr } |
NegExpr: { x:expr } |
ConstExpr: { n:int } |
CallExpr: { fn:string, parms:[expr] };

origin == (file:string, line:int);

Fig. 2. A typical set of Tm type definitions to represent expressions in a programming language.

A Tm data-structure definition file, such as the one shown in Fig. 2, consists of a
series of definitions of Tm types. A Tm type is either a class, or a tuple. Both can contain
an arbitrary number of fields.

3.1 Fields

Each field of a tuple or class consists of a name and a type. The type can be either a
simple type, written as the name of the type; or a list type, written by surrounding a
type with a square bracket pair (‘[’ and ‘]’). List types denote lists of arbitrary length,
whose length can change at run-time. For example, the following are all valid fields:

line:int
file:string
points:[point]
words:[[char]]

3.2 Class types

In its simplest form, a class type consists of a list of fields separated by commas, and
surrounded by curly braces. Like all type definitions, it must be terminated by a semi-
colon (‘;’). For example:

origin = { file:string, line:int };

A class can also inherit from other types. For example:

ifStatement = statement + { cond:expr, then:block, else:block };

means that the ifStatement class inherits the fields of the statement class.
A class can be defined to be virtual by using the ‘˜=’ operator instead of the ‘=’

operator. This indicates that the class itself will never be created, only subclasses of this
class. For example:

statement ˜= { org:origin };

To allow compact and clear specification of a class with many subclasses, subclasses
can be specified in the class itself. For example:

statement = { org:origin } +
ifStatement: { cond:expr, then:block, else:block } |
whileStatement: { cond:expr, body:block } |
forStatement: { var:string, bound:expr, body:block } |
assignStatement: { lhs:expr, rhs:expr }
;

Every labeled component is called an alternative; every alternative defines a subclass
with the name of its label. A class containing alternatives is always virtual. Thus, the
definition above is equivalent with:

statement ˜= { org:origin };
ifStatement = statement + { cond:expr, then:block, else:block };
whileStatement = statement + { cond:expr, body:block };
forStatement = statement + { var:string, bound:expr, body:block };
assignStatement = statement + { lhs:expr, rhs:expr };

3.3 Tuple types

A tuple consists of a list of fields separated by commas and surrounded with parenthe-
ses. Like all type definitions, it must be terminated by a semicolon (‘;’). For example:

origin == (file:string, line:int);

The ‘==’ operator introduces a tuple type.
A tuple can inherit from other types. For example, the following tuple inherits from

statement:

ifStatement == statement + (cond:expr, then:block, else:block);

A tuple statement cannot contain alternatives or multiple lists of fields.
A tuple type can always be converted to an equivalent class type; tuples are provided

for compactness and efficiency.

3.4 Restrictions

A number of restrictions are enforced on the type definitions:

– A type can not have the same name as a previously defined type.
– A type can not, directly or indirectly, inherit from itself.
– A type can not, directly or indirectly, inherit the same type twice.
– A type can not have two fields with the same name, or inherit a field with the same

name as one of its own fields.

4 The Tm template language

The Tm template language is an untyped interpreted programming language to manip-
ulate Tm type definitions and text. It is powerful enough to generate code for arbitrary
programming languages, and for metalevel computations such as generating sequence
numbers, calculating the dependencies between types, and the transitive closure of these
dependencies.

In Tm templates, all lines starting with a dot (‘.’) are commands. Lines that do not
start with a dot are copied to the output. In both command lines and output lines, ex-
pressions starting with a $ are expanded. Expressions of the form $() denote variable
references, expressions of the form $[] denote evaluations of arithmetic expressions,
expressions of the form ${} denote function invocations, and all other expressions of
the form $<letter> denote variable references to the variable <letter>. For ex-
ample, the template:

.set n 4

.set words for while goto
int br[$n,${len $(words)}];
int ht[$[$n*${len $(words)]}]];

will produce:

int br[4,3];
int ht[12];

The function len calculates the length of the list it is given, in this case the list as-
signed to variable words. The $[] expression in the declaration of ht multiplies the
calculated length by n.

There are also functions to list the defined types, list the field names of a given type,
retrieve the type of a given field, manipulate strings, etc. There are also commands to
include files, define macros, etc. For further details see [9].

5 The Tm C templates

As part of the core Tm distribution a number of templates for the C programming lan-
guage are provided. These templates have been used in a large range of programs, in-
cluding Tm itself and in the Timber compiler described below. It is useful to distinguish

three different types of template: administration templates, which generate code for
general-purpose administration of types, tree walker templates, that generate code to
visit particular nodes in a tree, and analysis templates, that generate code to traverse a
tree and collect information about the nodes in the tree.

For example, using the type definitions of Fig. 2 and the following template:

.set wantdefs rdup_origin

.set basename demo

.include tmc.ct

The variable wantdefs is set to the list of functions that should be generated. In this
case only the function rdup_origin is requested. The last line includes the standard
template file tmc.ct. The code in this file will generate the requested function.

From this template, Tm will generate a function rdup_origin that creates a du-
plicate of an origin instance. The C templates automatically generate other functions
if they are necessary to implement the requested functions. In this case, the template
will also generate a function new_origin that, given a string and an integer, creates
a new instance of origin.

5.1 Administration

The C administration code templates can generate code to:

– Create and destroy instances of the defined types.
– Read and write an ASCII representation of instances of these types.
– Compare two instances.
– Manipulate lists: append to, insert in, delete from, reverse, concatenate.
– Duplicate type instances.

For example, to create new instances of the types of Fig. 2, the following functions
are generated:

origin new_origin(int line, string file);
expr new_VarExpr(origin org, string nm);
expr new_AddExpr(origin org, expr l, expr r);
expr new_CallExpr(origin org, string fn, expr_list parms);
expr_list new_expr_list();

To recursively free instances of these types, the following functions are generated:

void rfre_origin(origin e);
void rfre_expr(expr e);
void rfre_expr_list(expr_list l);

As explained above, the C templates automatically generate other functions if they are
necessary to implement the requested functions.

5.2 Tree walkers

It is often necessary to traverse (‘walk’) a tree, and visit all nodes of a specific type. For
example, in the types of Fig. 2 we might want to visit all VarExpr nodes and register
the variable names (field nm) in the symbol table. The action to be performed on each
node must be written by the user. However, code is also needed to traverse the tree and
ensure that all instances of the target nodes are visited, and Tm can take care of that.

The tree walker template requires the following from the programmer:

– A list of node types to start the walk from, and a list of node types to visit.
– Action functions for all node types that must be visited.
– Macros for generating signatures and invocations of the walker functions.

From this information Tm computes the set of nodes to walk, and generates appropriate
walker functions. The action functions provided by the user are copied to the output
file, and together they form a complete tree walker.

By letting the user specify the signature of the walker and action functions, the
tree walkers are flexible enough to pass arbitrary information into the tree walk, and to
accumulate arbitrary information during the tree walk.

Using a tree walker has the usual advantages of code templates: extensive code
re-use. Moreover, the tree-walker template automates the calculation of the required
traversal. Since that is an error-prone task that must be repeated after every change or
addition to the types, automation greatly improves the reliability of the traversal code.

A tree walker is similar in concept to the visitor pattern that has been proposed as
design pattern for object-oriented programming [10]. In both cases we wish to apply
operations on a set of node types in a tree. The visitor pattern is implemented by adding
a method to all node types. These methods implement a walk over the entire tree. During
the walk, nodes are passed to a visitor method that applies the appropriate method for
that type of node. A different type of walk over the tree only requires the definition of a
different visitor method.

Although the visitor pattern has some of the advantages of a Tm template, it also
has a number of drawbacks. In particular, it is still necessary to implement the (generic)
tree walk by hand. Moreover, the visitor methods are often complicated since the correct
action for every type of node must be determined and executed. Finally, the entire tree
is always visited, even if a particular walk does not require it.

In contrast, for a Tm tree walker all tree traversal and type inspection code is gener-
ated; the user only needs to supply the code for the operations on the visited types.

5.3 Analyzers

One specific type of tree walker is used to collect information about a tree. For example,
we might want to estimate the size of the generated code, determine whether an expres-
sion has side-effects, or collect the variables that are used in a code fragment. We call
such tree walkers analyzers, and we provide a specialized template to generate them.
An analyzer must not modify the tree it walks, and its operation must be a reduction
operation. Typical reduction operators are boolean and and or, summation (for example

to calculate the estimated size of a code fragment), and list concatenation (for example
to collect all used variable names in a code fragment).

The analyzer template requires the following from the programmer:

– A list of node types to start the walk from, and a list of node types to visit.
– For all the node types to visit, a classification of the node. The method can be
ignore (do not visit this node),reduction (the value is the reduction of the val-
ues of its fields, possibly combined with a given constant), constant (the value
is the given constant), or function (the value is computed by a user-supplied
function).

– The type of the analysis result (e.g. int).
– The reduction operator to apply (e.g. addition).
– The neutral element of the reduction (e.g. 0).
– A macro to generate walker function signatures.
– Optionally, a termination test expression.

From this information the set of nodes to walk is computed, and appropriate walker
functions are generated. The termination test expression allows useless tree walks to be
cut off. For example, once the intermediate result of a boolean and reduction is false,
the traversal can stop, since the result will always be false.

6 Application of Tm in the Timber compiler

Tm and its C templates are used extensively in the Timber compiler [2, 3], a static com-
piler for a superset of Java [4]. To illustrate the usefulness of Tm we will describe what
impact the use of Tm has had on the compiler.

Internally, the Timber compiler consists of three modules (Fig. 3): a frontend that
translates Spar/Java to an intermediate representation called Vnus [11, 12], a number of
parallelization engines that read and write Vnus, and a backend that translates Vnus to
C++ code.

Spar/Java
frontend

Parallelization
engines

C++ code
generator

Spar/Java Vnus Vnus C++

Fig. 3. Data flow in the Timber compiler.

To give an indication of the amount of work Tm has saved us, we will show statis-
tics comparing the number of lines of hand-written and generated code. We calculate
the amount of generated code by counting the lines in the generated source files, and
subtracting the number of lines in the template file. For the amount of hand-written code
we count the lines in the non-generated source files, and in the template files.

handwritten

Tm administration

Tm treewalkers

Tm analyzers

yacc generated

lines %
handwritten 119,555 26.3%
Tm administration 175,744 38.6%
Tm tree walkers 144,643 31.8%
Tm analyzers 10,698 2.4%
yacc 4,533 1.0%

Fig. 4. Code origin for the entire Timber compiler.

We assign each line of code that is passed to the C compiler to one of the following
five categories: hand-written, generated by yacc, or generated by a Tm administration,
tree walker or analysis template.

Fig. 4 shows the statistics for the entire compiler. In subsequent sections we will
show the statistics for the individual compiler phases.

As these figures show, nearly 75% of the compiler code is generated by Tm. Roughly
half of the generated code is for administration, and the other half implements tree walk-
ers. Only a small fraction of the generated code is devoted to analyzer tree walkers. One
reason for this is that analyzer tree walkers are a fairly recent development; some analy-
sis operations are still done in hand-written code, even though in a new implementation
an analyzer tree walker would be used.

The Timber compiler has taken an estimated five person-years to implement: three
person-years to implement a static Java compiler, and two person-years to implement
the language extensions and the parallelization engines. The resulting compiler is able
to compile large programs and large parts of the standard Java library to efficient exe-
cutables.

6.1 Communication between engines

The Timber compiler consists of independent programs, called engines, that are ‘glued’
together with a shell script. Internally, each engine represents the program as a tree
of Tm types. Communication between the compiler engines is implemented using Tm-
generated functions. These functions print a tree to a textual representation in a file, and
convert this textual representation back into a tree.

6.2 The Spar/Java frontend

Fig. 5 shows the code generation statistics for the Spar/Java frontend.
The frontend parses Spar/Java, applies the semantic checks required by Java on the

program, applies a number of optimizations, and generates Vnus. A number of tree
walkers implement distinct compiler phases. In order of their application they do the
following:

– Rewrite some constructs to simplify the remaining phases.

handwritten

Tm administration

Tm tree walkers

Tm analyzers

yacc

lines %
handwritten 50,718 34.1%
Tm administration 44,640 30.0%
Tm tree walkers 41,557 27.9%
Tm analyzers 9,372 6.3%
yacc 2,554 1.7%

Fig. 5. Origin of the frontend code.

– Register class declarations in the symbol table.
– Register methods and constructors in the symbol table.
– Bind variables, types, methods and constructors.
– Check correctness of the program.
– Apply a number of code optimizations, e.g. inlining, constant folding.
– Add garbage-collection administration code.
– Eliminate unused variable declarations.

Other tree walkers implement auxiliary operations that work on fragments of code in-
stead of an entire program. They do the following:

– Mark variables that are only read as ‘final’.
– Rename variable references (used in method inlining).
– List the scope names of a code fragment.
– List variables that are not bound in the given code fragment.
– Do constant folding on an expression.
– List the assigned variables of a code fragment.
– Update the use count of the methods used in a code fragment.
– Rewrite ‘return’ statements to ‘goto’ statements (used in method inlining).

A number of analyzer tree walkers are also used, which do the following:

– Estimate the size of a given code fragment.
– Determine whether an expression is constant.
– Determine whether an expression requires the garbage-collection administration to

be up-to-date.
– Determine whether a code fragment alters the state of the garbage-collection ad-

ministration.
– Determine whether an expression has side effects.
– Determine whether an expression evaluates to zero.

6.3 The parallelization engines

Fig. 6 shows the code generation statistics for the parallelization engines.
The parallelization engines transform implicitly parallel Vnus programs (sequential

programs with parallelization annotations) to explicitly parallel Vnus programs. The

handwritten

Tm administration

Tm tree walkers
lines %

handwritten 18,534 9.4%
Tm administration 85,536 43.3%
Tm tree walkers 93,680 47.4%

Fig. 6. Origin of the parallelization code.

engines are implemented as a set of 57 rules that each apply a simple rewrite operation
on the Vnus program. These rules are implemented as tree walkers.

Some example rules are:

– Search for loops that only contain a communication statement for a single element,
and replace them by code that communicates all elements in a single message.

– Exchange loops in a loop nest when this is profitable.
– Simplify if statements with a constant true or false condition.

6.4 The Vnus backend

Fig. 7 shows the code generation statistics for the Vnus backend.

handwritten

Tm administration

Tm tree walkers

Tm analyzers

yacc

lines %
handwritten 50,303 46.3%
Tm administration 45,568 42.0%
Tm tree walkers 9,406 8.7%
Tm analyzers 1,326 1.2%
yacc 1,979 1.8%

Fig. 7. Origin of the backend code.

The backend translates Vnus code to C++ code. Similar to the frontend, a number
of tree walkers implement distinct compilation phases (checking, optimization), and a
number of other tree walkers serve as auxiliary functions (constant folding, tests, etc.).

7 Conclusions

Our template-based metacompiler Tm is able to generate an extensive range of func-
tions to manipulate data structures. Since it uses templates, the generated code is not
restricted to a specific programming language.

Since Tm provides a full programming language for template implementation, it is
possible to write highly sophisticated templates, for example the tree walker templates
described in Section 5.2, and the analyzers described in Section 5.3.

As we have shown, the use of Tm has had a profound impact on the implementa-
tion of Timber, our Spar/Java compiler. Nearly 75% of the source code of the compiler
is generated by Tm, allowing rapid implementation of the compiler, and resulting in a
much more robust and sophisticated compiler than would have been possible otherwise.
Consequently, in three person-years we have been able to implement a Java compiler
that is able to correctly compile large parts of the standard library to efficient executa-
bles. Our extensions to Java, and the parallelization engines were implemented in two
person-years.

References

1. C. van Reeuwijk. Tm: a code generator for recursive data structures. Software – Practice
and Experience, 22(10):899–908, October 1992.

2. C. van Reeuwijk, A. van Gemund, and H. Sips. Spar: A programming language for semi-
automatic compilation of parallel programs. Concurrency – Practice and Experience,
11(9):1193–1205, November 1997.

3. C. van Reeuwijk, F. Kuijlman, and H.J. Sips. Spar: an extension of Java for scientific com-
putation. Concurrency: Practice and Experience, accepted for publication.

4. C. van Reeuwijk. Timber download site. www.pds.twi.tudelft.nl/timber/downloading.html.
5. C. van Reeuwijk. Tm website. www.pds.twi.tudelft.nl/ � reeuwijk/software/Tm.
6. Edward D. Willink. Meta-Compilation for C++. PhD thesis, Computer Science Research

Group, University of Surrey, June 2001.
7. Edward D. Willink and Vyacheslav B. Muchnick. An object-oriented preprocessor fit for

C++. IEE Proceedings – Software, 147:49–58, April 2000.
8. AutoGen website. URL: autogen.sourceforge.net.
9. C. van Reeuwijk. Template manager reference manual. PDS Technical Report PDS-2000-

003, Delft University of Technology, May 2000. www.pds.twi.tudelft.nl/reports/2000/PDS-
2000-003.

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, January 1995.

11. C. van Reeuwijk. The Vnus language specification, version 2.1. PDS
Technical Report PDS-2000-002, Delft University of Technology, May 2000.
www.pds.twi.tudelft.nl/reports/2000/PDS-2000-002.

12. P.F.G. Dechering, J.A. Trescher, J.P.M. de Vreught, and H.J. Sips. V-cal: a calculus for the
compilation of data parallel languages. In C.-H. Huang et. al., editor, 8th Intl. Workshop,
Languages and Compilers for Parallel Computing, number 1033 in LNCS, pages 388–395,
Columbus, Ohio, USA, August 1995. Springer Verlag.

